1
|
Langrand J, Fontaine J, Tisserant B, Laruelle F, Facon N, Verdin A, Dewaele D, Duclercq J, Flanquart H, Lounès-Hadj Sahraoui A. Relevance of Angelica cultivation for essential oil production in a phytomanagement strategy: a three-year field study on an aged trace element -contaminated agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 979:179485. [PMID: 40280093 DOI: 10.1016/j.scitotenv.2025.179485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Phytomanagement integrates optimized phytotechnology to mitigate soil toxicity risks with a valorization strategy for the biomass produced on the contaminated soil. This three-year in situ study explores an innovative high-value-added chain by cultivating angelica (Angelica archangelica L.), an aromatic plant, on aged trace element (TE)-contaminated soil to produce essential oils (EO). Our results show that angelica thrived on heavily TE-contaminated soil, yielding up to 1.9 kg/ha of EO. Analyses of TEs and pesticide residues confirmed that EO distilled from angelica seeds contained negligible pollutants below or near detection limits and was similar to commercial EO. While fungal biomass remained unaffected, vegetation significantly increased total soil bacterial biomass and metabolic potential compared to initial conditions. Although mycorrhizal inoculation did not enhance angelica biomass yields, it significantly increased the plant's mycorrhizal colonization rate and contributed to reducing soil ecotoxicity after three years of cultivation. Moreover, a social acceptability study indicated that EO production from angelica seeds grown on heavily TE-polluted soil was well received by the public. The sector's positive economic balance further highlights its strong potential for development within phytomanagement strategies.
Collapse
Affiliation(s)
- Julien Langrand
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, UR 4492, 50 rue Ferdinand Buisson, CEDEX, 62228 Calais, France
| | - Joël Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, UR 4492, 50 rue Ferdinand Buisson, CEDEX, 62228 Calais, France
| | - Benoit Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, UR 4492, 50 rue Ferdinand Buisson, CEDEX, 62228 Calais, France
| | - Frédéric Laruelle
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, UR 4492, 50 rue Ferdinand Buisson, CEDEX, 62228 Calais, France
| | - Natacha Facon
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, UR 4492, 50 rue Ferdinand Buisson, CEDEX, 62228 Calais, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, UR 4492, 50 rue Ferdinand Buisson, CEDEX, 62228 Calais, France
| | - Dorothée Dewaele
- Centre Commun de Mesures, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Jérôme Duclercq
- Unité Écologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR7058 CNRS), Université de Picardie Jules Verne, 80029 Amiens, France; Equipe Recherche et Evaluation de Solutions Innovantes pour la Transition agroEcologique (RESISTE, EMiLE UPJV-AgroStation), Université de Picardie Jules Verne, 80039, Amiens, France
| | - Hervé Flanquart
- Université du Littoral Côte d'Opale, Université Lille, ULR 4477 - TVES - Territoires Villes Environnement & Société, 59140 Dunkerque, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, UR 4492, 50 rue Ferdinand Buisson, CEDEX, 62228 Calais, France.
| |
Collapse
|
2
|
Li L, Li X, McClements DJ, Jin Z, Ji H, Qiu C. Recent progress in the source, extraction, activity mechanism and encapsulation of bioactive essential oils. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39722469 DOI: 10.1080/10408398.2024.2439040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
There is growing concern about the potential risks posed by synthetic additives in industrial products, such as foods, cosmetics, agrochemicals, and personal care products. Many plant-derived essential oils (EOs) have been shown to exhibit excellent antibacterial, antifungal, antiviral, and antioxidant activities, and may therefore be used as natural preservatives in these applications. However, most EOs have relatively low water solubility and are prone to chemical degradation during storage. The degradation products of EOs can be toxic and may not be able to fully exert their biological activity, which limits their application. Typically, these challenges can be overcome by encapsulating the essential oil in an appropriate colloid delivery system. This article begins by reviewing the sources, extraction, and activity mechanisms of EOs, and then highlights plant-based encapsulation technologies that can be used to enhance their efficacy. Finally, the potential applications of plant essential oil encapsulation system are discussed.
Collapse
Affiliation(s)
- Lecheng Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | | | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Borah G, Samia BR, Hussain S, Kemprai P, Saikia SP, Haldar S. Eryngial: An α,β-Unsaturated Fatty Aldehyde as the Major Phytotoxin in Spiny Coriander (Eryngium foetidum L.) Essential Oil. Chem Biodivers 2024; 21:e202400195. [PMID: 38837651 DOI: 10.1002/cbdv.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Weed species many times possess allelochemicals as a part of their survival strategy. These metabolites can be potential targets in search of natural phytotoxins. This study aims to evaluate the phytotoxic ability of fatty aldehyde-rich essential oil from spiny coriander (Eryngium foetidum) leaves, also known as fitweed or spiritweed and to further identify the active phytotoxins. This oil dose-dependently inhibited the wheatgrass coleoptile and radicle growth in multiple bioassays with half maximal inhibitory concentration (IC50) 30.6-56.7 μg/mL, while exhibiting a less pronounced effect on the germination (IC50 181.8 μg/mL). The phytotoxicity assessment of two oil constituents identified eryngial (trans-2-dodecenal), exclusively major fatty aldehydic constituent as the potent growth inhibitor with IC50 in the range 20.8-36.2 μg/mL during an early phase of wheatgrass emergence. Eryngial-inspired screening of eleven saturated fatty aldehydes and alcohols did not find a significantly higher phytotoxic potency. In an open vessel, eryngial as the supplementation in agar medium, dose-dependently inhibited the growth of pre-germinated seeds of one monocot (bermudagrass) and one dicot (green amaranth) weed species with IC50 in the range 23.8-65.4 μg/mL. The current study identified eryngial, an α,β-unsaturated fatty aldehyde of coriander origin to be a promising phytotoxic candidate for weed control.
Collapse
Affiliation(s)
- Gitasree Borah
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Begom Rifah Samia
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
| | - Sajjad Hussain
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Phirose Kemprai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Department of Botany, Debraj Roy College, Golaghat, Assam, 785621, India
| | - Siddhartha Proteem Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Saikat Haldar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
| |
Collapse
|
4
|
Zhu Y, Wu T, Hu Q, He W, Zheng Y, Xie Y, Rao Q, Liu X. Plant Essential Oils: Dual Action of Toxicity and Egg-Laying Inhibition on Tetranychus urticae (Acari: Tetranychidae), Unveiling Their Potential as Botanical Pesticides. PLANTS (BASEL, SWITZERLAND) 2024; 13:763. [PMID: 38592755 PMCID: PMC10975855 DOI: 10.3390/plants13060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Tetranychus urticae, a prominent pest mite in strawberry and vegetable cultivation in China, has developed escalating resistance due to extensive chemical pesticide application. Consequently, there is an urgent need to identify safe and efficacious methods to reduce resistance development. In this study, 38 commercially available plant essential oils (EOs) were screened for their acaricidal potential and ability to inhibit oviposition. The findings revealed that 13 EOs exhibited notable acaricidal activity, with lemon EO demonstrating the highest toxicity, followed by sage, patchouli, frankincense, lemongrass, palmarosa, and oregano EOs. In addition, 18 EOs displayed significant inhibitory effects on oviposition, with lemon EO exhibiting the highest inhibition rate (99.15%) and inhibition index (0.98). Subsequently, sage, frankincense, clove, lemongrass, oregano, patchouli, myrrh, black pepper, palmarosa, and geranium EOs also showed inhibition rates exceeding 50%. Despite black pepper, clove, myrrh, and oregano EOs demonstrating relatively low toxicity against T. urticae, they exhibited heightened efficacy in inhibiting oviposition and suppressing population expansion. This study conducted a comparative assessment of the acaricidal and oviposition inhibition activities of EOs and their principal constituents, thus providing a theoretical basis for the development of botanical acaricides against T. urticae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiong Rao
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; (Y.Z.); (T.W.); (Q.H.); (W.H.); (Y.Z.); (Y.X.)
| | - Xunyue Liu
- Key Lab for Biology of Crop Pathogens and Insect Pests and Their Ecological Regulation of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China; (Y.Z.); (T.W.); (Q.H.); (W.H.); (Y.Z.); (Y.X.)
| |
Collapse
|
5
|
Sriti J, Aidi Wannes W, Bachrouch O, Aouini J, Boushih E, Limam F, Mediouni Ben Jemaa J. Phenolic constitutents, antioxidant and repellent activities of coriander ( Coriandrum sativum L.) fruits using different solvent extracts. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:225-237. [PMID: 36369804 DOI: 10.1080/09603123.2022.2143483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The organic solvent extracts (hexane, chloroform, acetone, methanol and water) of coriander fruits were reported for their antioxidant and repellent activities. The methanol and acetone extracts revealed the highest antiradical activity as compared to the other solvent extracts. HPLC analysis revealed that phenolic acids were the major compounds in chloroform and acetone extracts, whereas flavonoids in methanol and water extracts. The methanol extract of coriander fruits exhibited the highest repellent effect against coleopteran insects. Additionally, the hexane extract of coriander fruits also exhibited potent repellent and toxic activities against rice weevil. It appeared that coriander fruit extract obtained with the apolar solvent had more repellent potential against Sitophilus oryzae as compared to Tribolium castaneum. For Lasioderma serricorne, the methanol extract of coriander fruits reduced in a very significant way the adults followed by the chloroform and hexane extracts.
Collapse
Affiliation(s)
- Jazia Sriti
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Wissem Aidi Wannes
- Laboratory of Aromatic and Medicinal Plants, Borj Cedria Biotechnology Center, Hammam-Lif, Tunisia
| | - Olfa Bachrouch
- Laboratory of Plant Protection, National Institute of Agronomic Research of Tunisia (INRAT), University of Carthage, Ariana, Tunisia
| | - Jihed Aouini
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Emna Boushih
- Laboratory of Applied Biotechnology in Agriculture, National Institute of Agronomic Research of Tunisia (INRAT), University of Carthage, Ariana, Tunisia
| | - Ferid Limam
- Laboratory of Bioactive Substances, Centre of Biotechnology of Borj-Cedria, Hammam-Lif, Tunisia
| | - Jouda Mediouni Ben Jemaa
- Laboratory of Applied Biotechnology in Agriculture, National Institute of Agronomic Research of Tunisia (INRAT), University of Carthage, Ariana, Tunisia
| |
Collapse
|
6
|
Feng J, Yanshao B, Wang H, Zhang X, Wang F. Recent advancements on use of essential oils as preservatives against fungi and mycotoxins spoiling food grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1242-1263. [PMID: 37549249 DOI: 10.1080/19440049.2023.2240894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Spoilage of grains by mycotoxigenic fungi poses a great threat to food security and human health. Conventionally used chemical agents to prevent grain fungi contamination cause increasingly significant problems such as microbial resistance, residual toxicity and environmental unfriendliness. In recent years, plant essential oils (EOs) have become a hot spot in the research of control of grain fungi and mycotoxins, due to their extensive sources, non-toxicity, environmental friendliness and good antifungal efficiency. The current review aims to provide an overview of the prevention of fungi and mycotoxins in grain through EOs. The antifungal and toxin inhibition efficiency of different EOs and their effective components are investigated. The inhibition mechanism of EOs on fungi and mycotoxins in grains is introduced. The influence of EOs treatment on the change of grain quality is also discussed. In addition, the formulations and techniques used to overcome the disadvantages of EOs application are introduced. The results of recent studies have confirmed that EOs provide great potential for controlling common fungi and mycotoxins in grains, and enhancing quantity and quality safety of grains.
Collapse
Affiliation(s)
- Jiachang Feng
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Bowen Yanshao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - He Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Xiaowei Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Fenghe Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
7
|
Assadpour E, Can Karaça A, Fasamanesh M, Mahdavi SA, Shariat-Alavi M, Feng J, Kharazmi MS, Rehman A, Jafari SM. Application of essential oils as natural biopesticides; recent advances. Crit Rev Food Sci Nutr 2023; 64:6477-6497. [PMID: 36728841 DOI: 10.1080/10408398.2023.2170317] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There is an urgent need for the development of sustainable and eco-friendly pesticide formulations since common synthetic pesticides result in many adverse effects on human health and the environment. Essential oils (EOs) are a mixture of volatile oils produced as a secondary metabolite in medicinal plants, and show activities against pests, insects, and pathogenic fungi. Their chemical composition is affected by several factors such as plant species or cultivar, geographical origin, environmental conditions, agricultural practices, and extraction method. The growing number of studies related to the herbicidal, insecticidal, acaricidal, nematicidal, and antimicrobial effects of EOs demonstrate their effectiveness and suitability as sustainable and environment-friendly biopesticides. EOs can biodegrade into nontoxic compounds; at the same time, their harmful and detrimental effects on non-target organisms are low. However, few biopesticide formulations based on EOs have been turned into commercial practice upto day. Several challenges including the reduced stability and efficiency of EOs under environmental conditions need to be addressed before EOs are widely applied as commercial biopesticides. This work is an overview of the current research on the application of EOs as biopesticides. Findings of recent studies focusing on the challenges related to the use of EOs as biopesticides are also discussed.
Collapse
Affiliation(s)
- Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Aslı Can Karaça
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Mahdis Fasamanesh
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sahar Akhavan Mahdavi
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahya Shariat-Alavi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | | | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
8
|
Langrand J, Lounès-Hadj Sahraoui A, Duclercq J, Raveau R, Laruelle F, Bert V, Facon N, Tisserant B, Fontaine J. Coriander ( Coriandrum sativum) Cultivation Combined with Arbuscular Mycorrhizal Fungi Inoculation and Steel Slag Application Influences Trace Elements-Polluted Soil Bacterial Functioning. PLANTS (BASEL, SWITZERLAND) 2023; 12:618. [PMID: 36771702 PMCID: PMC9920375 DOI: 10.3390/plants12030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The cultivation of aromatic plants for the extraction of essential oils has been presented as an innovative and economically viable alternative for the remediation of areas polluted with trace elements (TE). Therefore, this study focuses on the contribution of the cultivation of coriander and the use of arbuscular mycorrhizal fungi (AMF) in combination with mineral amendments (steel slag) on the bacterial function of the rhizosphere, an aspect that is currently poorly understood and studied. The introduction of soil amendments, such as steel slag or mycorrhizal inoculum, had no significant effect on coriander growth. However, steel slag changed the structure of the bacterial community in the rhizosphere without affecting microbial function. In fact, Actinobacteria were significantly less abundant under slag-amended conditions, while the relative proportion of Gemmatimonadota increased. On the other hand, the planting of coriander affects the bacterial community structure and significantly increased the bacterial functional richness of the amended soil. Overall, these results show that planting coriander most affected the structure and functioning of bacterial communities in the TE-polluted soils and reversed the effects of mineral amendments on rhizosphere bacterial communities and their activities. This study highlights the potential of coriander, especially in combination with steel slag, for phytomanagement of TE-polluted soils, by improving soil quality and health.
Collapse
Affiliation(s)
- Julien Langrand
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| | - Jérôme Duclercq
- Unité Écologie et Dynamique des Systèmes Anthropisés (EDYSAN UMR CNRS 7058 CNRS), Université de Picardie Jules Verne, UFR des Sciences, 80029 Amiens, France
| | - Robin Raveau
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR Santé et Agroécologie du Vignoble (SAVE), Bordeaux Sciences Agro, ISVV, 33882 Villenave d’Ornon, France
| | - Frédéric Laruelle
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| | - Valérie Bert
- Unité Technologies Propres et Economie Circulaire, INERIS, Parc Technologique Alata, BP2, 60550 Verneuil en Halatte, France
| | - Natacha Facon
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| | - Benoît Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| | - Joël Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), Université Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, CS 80699, 62228 Calais, France
| |
Collapse
|
9
|
Natural Emulsions Based on Essential Oils as Antifungal and Antimycotoxicogenic Agents on Wheat for Bakery Industry. Foods 2022; 11:foods11182926. [PMID: 36141053 PMCID: PMC9498824 DOI: 10.3390/foods11182926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the antifungal and antimycotoxicogenic effect of binary and tertiary mixtures of Thymus vulgaris, Origanum sativum, and Coriandrum sativum essential oils (EOs), as well as emulsions based on EO mixtures, on fungi developed on wheat grains destined for the bakery industry. The chemical composition of the EO mixtures, the physical characteristics of the emulsions, and the influence of treatments on the proximate composition of wheat seeds were also studied. The methods used included the microbiological analysis of fungi developed on wheat seeds, the ELISA technique for determining the deoxynivalenol content (DON), gas chromatography coupled with mass spectrometry (GC-MS) to detect the chemical composition of the EOs, Zetasizer to analyse the particle sizes and their electric charge at the surface, and NIR analysis of the proximate composition of wheat. The chemical composition analysis revealed that thymol and o-cymene were the major components in the binary mixture of the EOs with thyme, linalool in the binary mixtures of the EOs with coriander and carvacrol, and o-cymene in the binary mixtures of the EOs with oregano. The results showed that, based on the zeta potential, the tertiary mixture ensured maximum emulsion stability, while the emulsion based on thyme and oregano was the less stable system. Regarding the antifungal and antimycotoxicogenic effect, the results showed that the highest inhibition potential on fungi was observed with the binary mixtures of the EOs based on thyme and oregano, and on deoxynivalenol (DON) when the binary emulsion based on the same EOs was applied to wheat seeds. The proximate composition of wheat seeds contaminated with DON showed an increase in protein content and mineral substances, and there were changes in the colour of the wheat seeds after treatment with the EOs. In conclusion, the results obtained in this study showed the possibility of using binary/tertiary mixtures of EOs and emulsions as healthy and environmentally friendly alternatives in the bakery industry.
Collapse
|
10
|
The Antifungal Activity of Cinnamon-Litsea Combined Essential Oil against Dominant Fungal Strains of Moldy Peanut Kernels. Foods 2022; 11:foods11111586. [PMID: 35681336 PMCID: PMC9180872 DOI: 10.3390/foods11111586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/17/2023] Open
Abstract
The antifungal activity of cinnamon (Cinnamomum cassia Presl), litsea [Litsea cubeba (Lour.) Pers.], clove (Syzygium aromaticum L.), thyme (Thymus mongolicus Ronn.) and citronella (Cymbopogon winterianus Jowitt) essential oils (EOs) against the dominant fungi isolated from moldy peanuts was investigated in this research. Firstly, strain YQM was isolated and identified by morphological characterization and 18S rRNA gene sequence analysis to be Aspergillus flavus (A. flavus). Next, antifungal effects of single or mixed EOs on strain YQM were evaluated by the inhibition zone test. The cinnamon-litsea combined essential oil (CLCEO, Vcinnamon oil:Vlitsea oil = 3:5) displayed the best antifungal effect on strain YQM. The chemical composition of CLCEO was identified and quantified by gas chromatograph-mass spectrometry (GC-MS), and results revealed that the major components of CLCEO were cinnamaldehyde and citral. Finally, the effect of EOs on the microstructure of strain YQM mycelia was observed under scanning electron microscope (SEM). The mycelia exposed to cinnamon essential oil (CEO) and litsea essential oil (LEO) were partly deformed and collapsed, while the mycelia treated with CLCEO were seriously damaged and the deformation phenomena such as shrinking, shriveling and sinking occurred. Therefore, CLCEO has great potential for using as anti-mildew agents during peanut storage.
Collapse
|
11
|
Pilkington LI. Towards the Use of Natural Compounds for Crop Protection and Food Safety. Foods 2022; 11:foods11050648. [PMID: 35267279 PMCID: PMC8909661 DOI: 10.3390/foods11050648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lisa I Pilkington
- School of Chemical Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|