1
|
Lopes BS, dos Santos Melo YL, de Sousa Teixeira JR, dos Santos JAB, de Araújo Morais AH, dos Santos Lima M, Luchiari AC, da Silva-Maia JK. Toxicological screening of jambolan hydroalcoholic extract ( Syzygium cumini (L.) Skeels) in zebrafish ( Danio rerio). Toxicol Rep 2025; 14:101999. [PMID: 40200929 PMCID: PMC11976243 DOI: 10.1016/j.toxrep.2025.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/10/2025] Open
Abstract
Jambolan (Syzygium cumini (L.) Skeels) is an important source of phenolic compounds, especially anthocyanins, known for their biological properties. This study investigated the acute toxicity of jambolan hydroalcoholic extract (JE) in zebrafish (Danio rerio) at different life stages. JE, obtained from freeze-dried fruits, was analyzed by high-performance liquid chromatography (HPLC) and found to be rich in total phenolic compounds (TPC). A total of 15 phenolic compounds were identified in the HPLC extracts, mainly anthocyanins (≈ 82 % of TPC), and JE presented relevant antioxidant properties in in vitro tests. Exposure to concentrations between 50 and 200 µg/ml resulted in increased malformations and mortality in both embryos and adult zebrafish, and doses of 300 and 400 µg/ml were lethal to the animals. Lethal concentrations (LC50) were estimated at 118.4 µg/ml for embryos and 68.86 µg/ml for adults. Despite no significant cardiovascular or neurological toxicities, behavioral impacts were observed at lower concentrations (10 µg/ml), indicating a nonmonotonic concentration-response curve. Our findings suggest that moderate JE doses (around 25 µg/ml) are safe for zebrafish; however, further studies are needed to ensure its safety and efficacy under different health conditions and exposure regimes.
Collapse
Affiliation(s)
- Beatriz Silva Lopes
- Nutrition Postgraduate Program, Health Science Center, Federal University of Rio Grande do Norte, Brazil
| | | | | | | | - Ana Heloneida de Araújo Morais
- Nutrition Postgraduate Program, Health Science Center, Federal University of Rio Grande do Norte, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Brazil
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte
| | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, Brazil
| | - Ana Carolina Luchiari
- FishLab, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Brazil
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Health Science Center, Federal University of Rio Grande do Norte, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
2
|
Kumar A, Singh K, Singh AK, Prakash J, Goswami AK, Mishra GP, Patel VB, Lata S, Singh A. Genetic diversity and population structure analysis of Indian blackberry (Syzygium cumini L.) using CAAT box‑derived polymorphism (CBDP) and start codon targeted polymorphism (SCoT) markers. J Genet Eng Biotechnol 2025; 23:100468. [PMID: 40074442 PMCID: PMC11875165 DOI: 10.1016/j.jgeb.2025.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/23/2025] [Accepted: 02/04/2025] [Indexed: 03/14/2025]
Abstract
Indian blackberry (Syzygium cumini L.) also known as jamun is a very important underutilized fruit crop with notable medicinal and economic value. However, its genetic improvement has been constrained by limited knowledge of the genetic diversity within existing collections. Therefore, a comprehensive characterization of genetic diversity in this species, using molecular tools, is essential to support effective germplasm management and application in breeding programs. In this investigation, a total of 32 jamun genotypes consisting of 30 seedling-origin genotypes, one improved cultivar CISH J-37 and one wild genotype (Syzygium fruitecosum) were analysed using the two gene-targeted markers, CBDP and SCoT. In total, 29 primers (22 CBDP and 7 SCoT primers) detected genetic polymorphism across the genotypes. The CBDP markers amplified a higher polymorphism percentage, 94.85% across 291 bands, than the SCoT markers, 92.75% across 69 bands. The mean PIC values for CBDP and SCoT were 0.28 and 0.31, respectively. MI values were higher for CBDP (3.21) than for SCoT (2.88). Cluster analysis using UPGMA identified six clades, which grouped genotypes into seedling-origin, improved and wild categories. The PCoA based on molecular profiling data of CBDP, SCoT and both together explained 26.65%, 38.39% and 23.22% of the variation respectively. AMOVA results revealed that 85-90% of genetic variation existed within populations. Bayesian STRUCTURE analysis grouped genotypes into two major populations confirming genetic divergence between seedling-origin, improved and wild genotypes. This study is the first to integrate CBDP and SCoT markers for genetic diversity analysis of the Indian blackberry. The results highlight the utility of these markers in genetic variation assessment and would help design germplasm conservation and breeding strategies in this crop.
Collapse
Affiliation(s)
- Ajay Kumar
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Kanhaiya Singh
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India.
| | - Jai Prakash
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Amit Kumar Goswami
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Gyan Prakash Mishra
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vishaw Bandhu Patel
- Horticultural Science Division, ICAR-Krishi Anusandhan Bhawan-II, New Delhi 110012, India
| | - Suman Lata
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Anshuman Singh
- ICAR- Central Institute for Subtropical Horticulture, Lucknow 226101, India
| |
Collapse
|
3
|
Bhavyashree N, Vaishnavi MS, Shravani P, Sabat S. Molecular Dynamics Simulation Studies of Beta-Glucogallin and Dihydro Dehydro Coniferyl Alcohol from Syzygium cumini for its Antimicrobial Activity on Staphylococcus aureus. Cell Biochem Biophys 2025; 83:599-617. [PMID: 39214923 DOI: 10.1007/s12013-024-01489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
With the escalating threat of antimicrobial resistance (AMR), discovering novel therapeutic agents against resistant pathogens like Staphylococcus aureus is crucial. This study explores phytochemicals from Syzygium cumini for their potential efficacy against AMR S. aureus infections, elucidating their mechanisms through in silico methods. We investigated 83 compounds from S. cumini, sourced from PubMed, using rigorous docking analysis against the ATP binding domain AgrC of S. aureus with AMdock with Autodock Vina v1.5.2. Drug-likeness predictions were assessed using SwissADME v2023 and Pass online v2.0. Molecular dynamics (MD) simulations identified promising compounds, focusing on stability and interaction dynamics. Beta-Glucogallin (BEG) and Dihydro Dehydro Coniferyl alcohol (DIH) emerged as significant hits. MD simulations with GROMACS v2020.6 revealed stable BEG and DIH complexes with AgrC, forming six hydrogen bonds with six key amino acids (Arg-303, Asp-338, Glu-342, Glu-384, Lys-389, Gly-396), indicating strong and stable bonding. The binding affinities for DIH and BEG are -73.474 ± 11.104 kJ/mol and -6.319 ± 18.823 kJ/mol with 4BXI, respectively. Our findings highlight BEG and DIH as promising candidates against AMR S. aureus infections, showing favourable binding affinities and stable interactions with AgrC. This study underscores the importance of natural products in combating AMR and demonstrates the utility of computational methodologies in drug discovery. Further experimental validation is warranted to fully exploit these phytochemicals' therapeutic potential.
Collapse
Affiliation(s)
- N Bhavyashree
- Department of Biotechnology, People's Education Society University, Bangalore, 560085, Karnataka, India
| | - M S Vaishnavi
- Department of Biotechnology, People's Education Society University, Bangalore, 560085, Karnataka, India
| | - P Shravani
- Department of Biotechnology, People's Education Society University, Bangalore, 560085, Karnataka, India
| | - Sasmita Sabat
- Department of Biotechnology, People's Education Society University, Bangalore, 560085, Karnataka, India.
| |
Collapse
|
4
|
Pandey J, Jaishwal N, Jayswal M, Gupta DC, Dhakal B, Budean D, Lamichhane G, Devkota HP. Evaluation of Antioxidant, Xanthine Oxidase-Inhibitory, and Antibacterial Activity of Syzygium cumini Linn. Seed Extracts. PLANTS (BASEL, SWITZERLAND) 2025; 14:316. [PMID: 39942878 PMCID: PMC11820589 DOI: 10.3390/plants14030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/03/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025]
Abstract
Syzygium cumini (L.) Skeels, commonly known as the Jamun or Indian blackberry, is a tropical evergreen tree native to the Indian subcontinent, and it belongs to the Myrtaceae family. This research aimed to assess the antibacterial properties of the extracts derived from S. cumini seed kernels and evaluate their total flavonoid content, total phenol content, total carbohydrate content, antioxidant capacity, and inhibitory effects on xanthine oxidase. Cold maceration was chosen for its ability to preserve thermolabile compounds and efficiently extract bioactive constituents with minimal energy and equipment requirement, with hexane and methanol employed as extraction solvents. The methanolic seed kernel extract of S. cumini showed the highest flavonoid (127.78 μg quercetin equivalent/mg dried extract vs. 21.24 μg quercetin equivalent/mg in hexane dried extract) and polyphenol content (153.81 μg gallic acid equivalent/mg dried extract vs. 38.89 μg gallic acid equivalent/mg in hexane dried extract), along with significant carbohydrate content (475.61 μg glucose equivalent/mg dried extract vs. 5.57 μg GE/mg in hexane dried extract). It also demonstrated potent antioxidant activity (IC50: 9.23 μg/mL; ascorbic acid: 5.10 μg/mL) and xanthine oxidase inhibition (IC50: 14.88 μg/mL), comparable to the standard drug allopurinol (IC50: 6.54 μg/mL), suggesting its therapeutic potential. Moreover, the methanolic extract of seed kernels exhibited strong antibacterial activity, with inhibition zones of 19.00 mm against S. epidermidis, higher than the standard antibiotic (gentamicin: 18.33 mm) against K. pneumonia (ciprofloxacin: 33.66 mm). The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.32 mg/mL and 0.52 mg/mL, respectively, were observed for the same extract against S. epidermis. In conclusion, this study demonstrated the remarkable antibacterial effects of S. cumini methanolic seed kernel extract against various pathogenic microorganisms as well as significant inhibitory effects on xanthine oxidase and antioxidant activity.
Collapse
Affiliation(s)
- Jitendra Pandey
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Nitesh Jaishwal
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - Mamta Jayswal
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - Deep Chand Gupta
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - Bishnu Dhakal
- Department of Pharmacy, Crimson College of Technology, Pokhara University, Devinagar-11, Butwal 32900, Nepal; (N.J.); (M.J.); (D.C.G.); (B.D.)
| | - David Budean
- Department of Chemistry, University of Hawai’i at Manoa, 2545 McCarthy Mall, Honolulu, HI 96822, USA;
| | - Gopal Lamichhane
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan;
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
5
|
Ashagrie YN, Chaubey KK, Tadesse MG, Dayal D, Bachheti RK, Rai N, Pramanik A, Lakhanpal S, Kandwal A, Bachheti A. Antidiabetic phytochemicals: an overview of medicinal plants and their bioactive compounds in diabetes mellitus treatment. Z NATURFORSCH C 2025:znc-2024-0192. [PMID: 39786973 DOI: 10.1515/znc-2024-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Diabetes mellitus (DM) is a group of metabolic disorders characterized by hyperglycemia due to insufficient insulin secretion or action. Contributing factors include genetic predisposition, obesity, family history, inactivity, and environmental risks. Type 2 diabetes mellitus (T2DM), the most common form, involves impaired insulin secretion by pancreatic β-cells, leading to insulin resistance. By 2045, it is projected that India and China will have approximately 134.3 and 110.8 million diabetic individuals, respectively. Although synthetic drugs are effective in managing DM, they often come with side effects. Consequently, plant-based phytochemicals with antidiabetic properties are gaining attention. Research indicates that around 115 medicinal plants (MPs) have antidiabetic effects, particularly those from the Fabaceae, Liliaceae, and Lamiaceae families. Bioactive compounds like alkaloids, triterpenoids, flavonoids, and phenolics are known to combat DM. Traditional medicinal systems, particularly in developing countries, offer effective DM management. This review highlights the importance of MPs and their bioactive compounds in treating diabetes and underscores the need for further research to commercialize plant-based antidiabetic drugs.
Collapse
Affiliation(s)
- Yenework Nigussie Ashagrie
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Kundan Kumar Chaubey
- School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, India
- School of Basic and Applied Sciences, Sanskriti University, Mathura, Uttar Pradesh, India
| | - Mesfin Getachew Tadesse
- Department of Industrial Chemistry, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Deen Dayal
- Department of Biotechnology, GLA University, Mathura, India
| | - Rakesh Kumar Bachheti
- Department of Allied Sciences, Graphic Era Hill University, Society Area, Clement Town, Dehradun, Uttarakhand, India
- University Centre for Research and Development, Chandigarh University, Gharuan 140413, Punjab, India
| | - Nishant Rai
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, India
| | - Sorabh Lakhanpal
- Division of Research and Development, Lovely Professional University, Phagwara, 144411, India
| | - Anuj Kandwal
- Department of Chemistry, Harsh Vidya Mandir (P.G.) College, Sri Dev Suman Uttarakhand University, Raisi, Haridwar, India
| | - Archana Bachheti
- Department of Environment Science, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| |
Collapse
|
6
|
Bangar NS, Dixit A, Apte MM, Tupe RS. Syzygium cumini (L.) skeels mitigate diabetic nephropathy by regulating Nrf2 pathway and mitocyhondrial dysfunction: In vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118684. [PMID: 39127117 DOI: 10.1016/j.jep.2024.118684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL PREVALENCE Hyperglycemia in diabetes increases the generation of advanced glycation end products (AGEs) through non-enzymatic reactions. The interaction between AGEs and their receptors (RAGE) leads to oxidative and inflammatory stress, which plays a pivotal role in developing diabetic nephropathy. Syzygium cumini (SC) L. (DC.) homeopathic preparations viz. 200C, 30C, and mother tincture [MT] are used to treat diabetes. This study aimed to elucidate the regulatory effects of SC preparations (200C, 30C, and MT) on the nuclear factor erythroid 2-related factor 2 (Nrf2) - nuclear factor-κB (NF-κB) pathways and mitochondrial dysfunction in mitigating diabetic nephropathy (DN). MATERIALS AND METHODS Streptozotocin-induced diabetic rats were treated with SC preparations (200C, 30C, MT; 1:20 dilution in distilled water; 600 μL/kg body weight) and metformin (45 mg/kg body weight) twice daily for 40 days. DN was evaluated through biochemical parameters and histological examination. Renal tissue lysates were analyzed for glycation markers. Protein and gene levels of Nrf2, NF-κB, and mitochondrial dysfunctional signaling were determined via western blotting and RT-qPCR. An immunohistochemical analysis of the kidneys was performed. In vitro, human serum albumin (HSA - 10 mg/ml) was glycated with methylglyoxal (MGO - 55 mM) in the presence of SC preparations (200C, 30C, MT) for eight days. Glycated samples (400 μg/mL) were incubated with renal cells (HEK-293) for 24 h. Further reactive oxygen species production, Nrf2 nuclear translocation, and protein or gene expression of Nrf2 and apoptosis markers were analyzed by western blotting, RT-qPCR, and flow cytometry. Molecular docking of gallic and ellagic acid with the HSA-MGO complex was performed. RESULT In vivo experiments using streptozotocin-induced diabetic rats treated with SC preparations exhibited improved biochemical parameters, preserved kidney function, and reduced glycation adduct formation in a dose-dependent manner. Furthermore, SC preparations downregulated inflammatory mediators such as RAGE, NF-κB, vascular endothelial growth factor (VEGF), and Tumor necrosis factor α (TNF-α) while upregulating the Nrf2-dependent antioxidant and detoxification pathways. They downregulated B-cell lymphoma 2 (Bcl-2) associated X-protein (BAX), C/EBP homologous protein (CHOP), Dynamin-related protein 1 (DRP1), and upregulated BCL 2 gene expression. Notably, SC preparations facilitated nuclear translocation of Nrf2, leading to the upregulation of antioxidant enzymes and the downregulation of oxidative stress markers. Molecular docking studies revealed favorable interactions between gallic (-5.26 kcal/mol) and ellagic acid (-4.71 kcal/mol) with the HSA-MGO complex. CONCLUSION SC preparations mitigate renal cell apoptosis and mitochondrial dysfunction through Nrf2-dependent mechanisms.
Collapse
Affiliation(s)
- Nilima S Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| | - Aditi Dixit
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| | - Mayura M Apte
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
7
|
Uza NU, Dastagir G, Ahmad I, Ullah S, Din IU, Suleman M. Estimation of Secondary Metabolites, Nutrients, Minerals, and Anti-Inflammatory and Antidiarrheal Agents in Heliotropium rariflorum Stocks at Two Phenological Stages. Chem Biodivers 2025:e202402009. [PMID: 39754395 DOI: 10.1002/cbdv.202402009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
The medicinal value of plants depends on minerals and nutrients and their complexation with chemotherapeutic compounds. The present study aimed to evaluate the phytochemical composition with anti-inflammatory and antidiarrheal potential of Heliotropium rariflorum. Among nutrients, fibers were maximum (25.3% in leaves, 53.05% in stem, 57.01% in roots) during flowering period. Leaves were rich in ash contents. Fat contents were minimum (0.94%-7.22%) in plant parts during both periods. The highest gross energy was calculated for leaves during vegetative period (210.136 kcal/100 g). Similarly, macro-minerals (Ca & K contents) were highest at both stages, whereas micro-minerals (Cu contents) were at flowering stage as compared to the rest of the elements. Gas chromatography-mass spectrometry (GCMS) revealed that the leaves methanolic extract was rich in 16,28-secosolanidan-3-ol and tetrahydro-solasodine (1.40%), stem in 6-octadecenoic acid (29.24%) (9,12-octadecadienoic acid (Z,Z) and cis-7-dodecen-1-yl acetate; 14.30%), and roots in 4-(1-methyle 2-cyclohexen)-1-one, 3,5-dimethylpyrazole, and 2,4-dimethylfuran (0.83%). The plant exhibited statistically significant (p < 0.01) anti-inflammatory while mild antidiarrheal properties (p > 0.01). It is recommended that H. rariflorum is a good source of nutrients, minerals, and secondary metabolites and can be used in food and pharmaceutical industries, especially as an anti-inflammatory and antidiarrheal agent.
Collapse
Affiliation(s)
- Noor Ul Uza
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Ghulam Dastagir
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Imran Ahmad
- Plant Pharmacognosy and Phytomedicine Research Lab, Department of Botany, Shaheed Benazir Bhutto University, Sheringal, Upper Dir, Khyber Pakhtunkhwa, Pakistan
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Israr Ud Din
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Suleman
- Department of Agricultural Chemistry & Biochemistry, The University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
8
|
Jan Y, Binsuwaidan R, Malik M, Yaseen M, Ahmad S, Alshammari N, Adnan M, Ashraf SA, Panda BP. Characterization of jamun ( Syzygium cumini) juice fortified with nanoemulsified vitamin D 3: In vitro and in vivo assessment of its nutraceutical value and anti-diabetic potential. Food Chem X 2025; 25:102133. [PMID: 39867215 PMCID: PMC11761829 DOI: 10.1016/j.fochx.2024.102133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
This study aimed to fortify Jamun (Syzygium cumini) juice with vitamin D3 to address vitamin D deficiency and boost health. A nanoemulsion of vitamin D3 was fabricated using a low-temperature (4-200C) sonication method and incorporated into the juice. The vitamin D fortified jamun juice (VDFJJ) exhibited a total polyphenol content of 14.37 mg GAE/mL, total flavonoids of 8.27 mg QE/mL, and 94.2 % antioxidant activity. It demonstrated antidiabetic potential, with IC50 values for α-amylase and α-glucosidase inhibition at 110 μg/mL and 134 μg/mL, respectively. Vitamin D3 showed 82 % release profile in simulated gastrointestinal fluids. After 4 weeks of VDFJJ intervention in vitamin D-deficient animal models, serum levels of 25-OHD, PTH, calcium, phosphorus, and ALP were significantly improved. Vitamin D3 demonstrated stability within the matrix, showing a slight reduction from 4000 IU to 2440 IU over a three-month period. This nanoemulsion approach effectively enhances the solubility and bioavailability of vitamin D3 in low-fat beverages like jamun juice, offering significant nutritional benefits and anti-diabetic properties.
Collapse
Affiliation(s)
- Yasmeena Jan
- Department of Food Technology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi, India
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muneeb Malik
- Department of Food Technology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi, India
- Department of Biotechnology, School of Engineering, IILM University, Greater Noida, India
| | - Mifftha Yaseen
- Division of Food Science and Technology, Faculty of Horticulture, Shere Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
- Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
9
|
Shiekh RAE, Atwa AM, Elgindy AM, Mustafa AM, Senna MM, Alkabbani MA, Ibrahim KM. Therapeutic applications of eucalyptus essential oils. Inflammopharmacology 2025; 33:163-182. [PMID: 39499358 PMCID: PMC11799053 DOI: 10.1007/s10787-024-01588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024]
Abstract
Eucalyptus essential oils (EEOs) have gained significant attention recently anticipated to their broad range of prospective benefits in various biological applications. They have been proven to have strong antibacterial properties against a variety of bacteria, fungi, and viruses. This makes them valuable in combating infections and supporting overall hygiene. The active compounds present in these oils can help alleviate inflammation, making them valuable in addressing inflammatory conditions such as arthritis, respiratory ailments, and skin disorders. Respiratory health benefits are another prominent aspect of EEOs. Inhalation of these oils can help promote clear airways, relieve congestion, and ease symptoms of respiratory conditions like coughs, colds, and sinusitis. They are often utilized in inhalation therapies and chest rubs. They can be used topically or in massage oils to alleviate muscle and joint pain. Furthermore, these oils have shown potential in supporting wound healing. Their antimicrobial activity helps prevent infection, while their anti-inflammatory and analgesic properties contribute to reducing inflammation and pain associated with wounds. In aromatherapy, EEOs are renowned for their invigorating and uplifting qualities, promoting mental clarity, relaxation, and stress relief. Overall, EEOs hold great promise in biological applications, offering a natural and versatile approach to promote health and well-being. Continued research and exploration of their therapeutic potential will further unveil their benefits and broaden their applications in various fields.
Collapse
Affiliation(s)
- Riham A El Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | | | - Kawther Magdy Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
10
|
Das G, Shin HS, Lim KJ, Patra JK. Bio-Inspired Synthesis of Gold Nanoparticles Using Leaf Extract of Jamun and Research on Its Biomedical Potential. Int J Nanomedicine 2024; 19:12257-12286. [PMID: 39588261 PMCID: PMC11587809 DOI: 10.2147/ijn.s480592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/09/2024] [Indexed: 11/27/2024] Open
Abstract
Background Bio-based synthesis of metallic nanoparticles has garnered much attention in recent times owing to their non-toxic, environmentally friendly, and cost-effective nature. Methods In this study, gold nanoparticles (S4-GoNPs) were synthesized by a simple and environmentally friendly technique using an aqueous extract of jamun leaves (JLE) as an effective capping, stabilizer, and reducing agent. JLE was screened for the presence of phytochemicals followed by synthesis, characterization, and evaluation of their antibacterial, antidiabetic, antioxidant, and photocatalytic degradation potentials using standard established procedures. Results The phytochemical profile of JLE was found to be rich in flavonoids, tannins, terpenoid phenols, anthraquinones, and cardiac glycosides. Its GC-MS analysis revealed the presence of compounds majorly of them as the (1R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene (5.141%), 2(10)-pinene (4.119%), α-cyclopene (5.274%) α,α-muurolene (7.525%), naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-methylethyl)-(1.alpha.,4a.beta.,8a.alpha) (8.470%), delta-cadinene (23.246), α-guajene (3.451%), and gamma-muurolene (4.379%). The visual morphology and UV-Vis spectral surface plasmon resonance at 538 nm confirmed the successful synthesis of S4-GoNPs. The average particle size was determined as 120.5 nm with Pdi = 0.152, and -27.6 mV zeta potential. Using the Scherrer equation, the average crystallite size was calculated as 35.69 nm. S4-GoNPs displayed significant antidiabetic properties, with 40.67% of α-amylase and 91.33% of α-glucosidase inhibition activity. It also exhibited promising antioxidant potential in terms of the DPPH (91.56%) ABTS (76.59%) scavenging. It displayed 31.04% tyrosinase inhibition at 0.1 mg/mL. Moreover, it also demonstrated encouraging antibacterial effects with zones of inhibition ranging from 11.02 - 14.12 mm as compared to 10.55-16.24 mm by the reference streptomycin (at 0.01 mg/disc). In addition, S4-GoNPs also showed potential for the photocatalytic degradation of the industrial dye, methylene blue. Conclusion In conclusion, these results suggest the promising applicability of green-synthesized S4-GoNPs in various sectors, including the biomedical, cosmetic, food, and environmental waste management industries.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Kyung-Jik Lim
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi, Republic of Korea
| |
Collapse
|
11
|
Barbosa Dos Santos JA, Assis CF, Soares Aragao CF, Dos Santos Lima M, Passos TS, da Silva-Maia JK. Nanoparticles based on biopolymers improved antioxidant activity of phenolic compounds from jambolan ( Syzygium cumini (L.) skeels). Heliyon 2024; 10:e36973. [PMID: 39286073 PMCID: PMC11402765 DOI: 10.1016/j.heliyon.2024.e36973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Jambolan (Syzygium cumini L.) is an underutilized fruit rich in bioactive phenolic compounds, specially anthocyanins, but the low stability of these substances and interaction with other compounds in the food matrix limit their application as food additives; nanoencapsulation is the best strategy to overcome these limitations. This study aimed to nanoencapsulate a phenolic-rich jambolan extract using whey proteins and pectin by nanoprecipitation in different antisolvent compositions. Two formulations were synthesized (7.33 % extract, 1.67 % pectin, and 5 % concentrated or isolated whey protein) precipitated in different acetone concentrations (50, 70, and 100 % v/v). SEM showed particles with spherical shape and smooth surface. DLS pointed diameters between 82 nm and 116 nm. FTIR indicated chemical interactions between the materials. Encapsulation efficiency showed high phenolic compounds entrapment in all systems [73.81-84.65 %, p > 0.05]. However, particles precipitated in 50 and 100 % acetone (v/v) showed greater anthocyanins retention [56.89-35.24 %, p < 0.05]. Nanoencapsulation potentiated the antioxidant activity up to 110 % more than the crude extract (p < 0.05). These results show the potential of nanoprecipitation as an effective encapsulation process and the biopolymers combination to produce nanoparticles containing jambolan phenolic compounds to promote their application in foods and health products.
Collapse
Affiliation(s)
- Jessica Anarellis Barbosa Dos Santos
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
| | - Cristiane Fernandes Assis
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59012-570, Natal, Brazil
| | - Cicero Flavio Soares Aragao
- Department of Pharmacy, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59012-570, Natal, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, 56316-686, Petrolina, Brazil
| | - Thais Souza Passos
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
| | - Juliana Kelly da Silva-Maia
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte (UFRN), 59078-900, Natal, Brazil
| |
Collapse
|
12
|
Kotakadi SM, Bangarupeta MJ, Kandati K, Borelli DPR, Sayyed JA, Shaik MI, Nannepaga JS. Biosynthesized MgONPs using Syzygium cumini seed extract: Characterization, In vitro anti-oxidant and anti-microbial activity. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 43:e00846. [PMID: 39034969 PMCID: PMC11260020 DOI: 10.1016/j.btre.2024.e00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 07/23/2024]
Abstract
The present study investigates S. cumini seed extracts which are considered as a promising and valuable source of bioactive compounds were prepared using different solvents such as methanol, ethanol, petroleum ether, acetone, chloroform, and diethyl ether. Among these solvents, methanol exhibited the highest extraction with a yield of 42 %. HPLC analysis revealed the highest concentration of quercetin flavonoids (49.62 mg/gm) in the methanolic S. cumini seed extract. Thus, the current work deals with the MgONPs synthesis through a biological approach using different S. cumini seed extracts. In vitro anti-oxidant properties were evaluated, which showed an IC50 value of 22.46 μg/mL for MgONPs synthesized from methanolic extract, surpassing the anti-oxidant potency of ascorbic acid by threefold. By leveraging the rich repository of bioactive compounds found within S. cumini seed extract, this study presents a novel approach to MgONPs synthesis. Exploring the symbiotic relationship between S. cumini seed extract and MgONPs, this research elucidates the pivotal role of bioactive compounds in guiding the formation and properties of nanostructures. Further anti-microbial studies on MgONPs from methanolic S. cumini seed extract were conducted against four different bacterial strains (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and S. typhimurium), revealing potent anti-microbial activity with 5.3 mm of inhibition for 100 µl against S. typhimurium. These findings suggest that S. cumini is a source of bioactive compounds responsible for the successful synthesis of MgONPs. Characterization studies of MgONPs were also carried out using UV-vis spectroscopy, FTIR, SEM, XRD, DSC and HPLC.
Collapse
Affiliation(s)
- Sai Manogna Kotakadi
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India
| | - Manpreet Jivin Bangarupeta
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Kusuma Kandati
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India
| | | | - Jaheera Anwar Sayyed
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - John Sushma Nannepaga
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, India
| |
Collapse
|
13
|
Apte MM, Khattar E, Tupe RS. Mechanistic role of Syzygium cumini (L.) Skeels in glycation induced diabetic nephropathy via RAGE-NF-κB pathway and extracellular proteins modifications: A molecular approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117573. [PMID: 38110133 DOI: 10.1016/j.jep.2023.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Syzygium cumini (L.) Skeels (SC), an ancient medicinal plant, is used as a complementary and alternative medicine for treating diabetes mellitus and its associated complications, such as diabetic nephropathy (DN). Phytochemicals present in SC homeopathic formulations possess anti-glycemic, anti-glycation, anti-inflammatory, and antioxidant properties. Additionally, the non-enzymatic formation of advanced glycation end products (AGEs) increases during hyperglycemia in diabetes. AGEs interaction with their receptor of AGEs (RAGE) promotes inflammation via Nuclear Factor-κB (NF-κB) and the accumulation of Extracellular Matrix (ECM) proteins, contributing to the renal dysfunction in DN. However, the molecular mechanism through which SC formulations interact with the AGEs-RAGE-NF-κB pathway has not yet been investigated. AIM This study aims to examine the impact of SC formulations on the RAGE-NF-κB pathway and ECM protein modifications in glycation-induced DN using a molecular approach. MATERIALS AND METHODS Human serum albumin (10 mg/ml) was glycated with MGO (55 mM) in the presence of SC formulations - Mother tincture (MT), 30C, 200C for 7 days. Glycated samples were added to renal cells (HEK 293) for 24 h. Subsequently, cellular gene and protein expressions of RAGE, NF-κB, vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen IV (Col IV), and fibronectin were determined using RT-qPCR and Western blot analysis. The immunofluorescence, luciferase assay, and chromatin immunoprecipitation techniques were employed to gain insights into glycation-induced NF-κB nuclear translocation, transcriptional activity, and its effect on RAGE promoter activity in SC-treated cells. RESULTS SC formulations significantly downregulated glycation-induced elevated levels of RAGE and NF-κB. Mechanistically, SC formulations prevented NF-κB nuclear translocation, transcriptional activity, and RAGE promoter activity. Also, SC formulations significantly attenuated glycation-enhanced expressions of inflammatory cytokines (IL-6, TNF-α, and VEGF) and ECM proteins (Col IV and fibronectin). CONCLUSION Our findings enlighten the molecular mechanism of SC in DN by targeting the AGEs-RAGE-NF-κB signaling pathway, inflammatory responses, and ECM accumulation. Hence, the study validates the protective role of SC formulations and signifies its novel potential for treating DN.
Collapse
Affiliation(s)
- Mayura M Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| | - Ekta Khattar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India.
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
14
|
Kumar V, Singh CS, Bakshi S, Kumar S, Yadav SP, Al-Zamani ZAS, Kumar P, Singh U, Meena KK, Bunkar DS, Paswan VK. Physicochemical and bioactive constituents, microbial counts, and color components of spray-dried Syzygium cumini L. pulp powder stored in different packaging materials under two controlled environmental conditions. Front Nutr 2023; 10:1258884. [PMID: 37860034 PMCID: PMC10582985 DOI: 10.3389/fnut.2023.1258884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Currently, the demand for functional food items that impart health benefits has been rising. Blackberry (Syzygium cumini L.) fruit has high anthocyanin content and other functional attributes. However, this seasonal fruit is highly perishable, and a large proportion of it goes unharvested and wasted worldwide. Spray drying of the fruit pulp can impart improved shelf life, ensuring long-term availability for consumers to exploit its health benefits. The storage quality varies according to the type of packaging material and the storage environment. Therefore, in this study, the shelf life span of the spray-dried Syzygium cumini L. pulp powder (SSCPP) was investigated during 6 months of storage under three types of packaging materials (i.e., polystyrene, metalized polyester, and 4-ply laminates) in a low-temperature environmental (LTE) and at ambient environmental conditions. The physicochemical stability of bioactive principles (TPC and TAC), microbial counts, and color components were analyzed at 0, 2, 4, and 6 months of storage. There was a significant gradual loss of dispersibility and solubility with an increase in flowability, bulk density, and wettability during the entire storage period for all three packaging materials. The TSS, pH, TPC, TAC, and microbial counts decreased in the SSCPP both at ambient and LTE conditions during the study. Among all the packaging materials, the 4-ply laminate was found to be the most appropriate and safe for storage of spray-dried SCPP at LTE conditions.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Chandra Shekhar Singh
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Sudhir Kumar
- Department of Food Technology, School of Life Sciences and Biotechnology, CSJMU, Kanpur, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology & Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Pankaj Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Upendra Singh
- Department of Agriculture Engineering, SKN College of Agriculture, SKNAU, Jobner, Rajasthan, India
| | - Kamlesh Kumar Meena
- Department of Dairy and Food Microbiology, College of Dairy and Food Technology, MPUAT, Udaipur, India
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
15
|
Wu Y, Yu X, Ding W, Remón J, Xin M, Sun T, Wang TTY, Yu LL, Wang J. Fabrication, performance, and potential environmental impacts of polysaccharide-based food packaging materials incorporated with phytochemicals: A review. Int J Biol Macromol 2023; 249:125922. [PMID: 37482166 DOI: 10.1016/j.ijbiomac.2023.125922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Although food packaging preserves food's quality, it unfortunately contributes to global climate change since the considerable carbon emissions associated with its entire life cycle. Polysaccharide-based packaging materials (PPMs) are promising options to preserve foods, potentially helping the food industry reduce its carbon footprint. PPMs incorporated with phytochemicals hold promise to address this critical issue, keep food fresh and prolong the shelf life. However, phytochemicals' health benefits are impacted by their distinct chemical structures thus the phytochemicals-incorporated PPMs generally exhibit differential performances. PPMs must be thoughtfully formulated to possess adequate physicochemical properties to meet commercial standards. Given this, this review first-time provides a comprehensive review of recent advances in the fabrication of phytochemicals incorporated PPMs. The application performances of phytochemicals-incorporated PPMs for preserving foods, as well as the intelligent monitoring of food quality, are thoroughly introduced. The possible associated environmental impacts and scalability challenges for the commercial application of these PPMs are also methodically assessed. This review seeks to provide comprehensive insights into exploring new avenues to achieve a greener and safer food industry via innovative food packaging materials. This is paramount to preserve not only food shelf life but also the environment, facilitating the eco-friendly development of the food industry.
Collapse
Affiliation(s)
- Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Xueling Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Wei Ding
- China Leather and Footwear Research Institute Co. Ltd., Beijing, PR China.
| | - Javier Remón
- Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018 Zaragoza, Spain
| | - Mengmeng Xin
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China
| | - Tianjun Sun
- Department of Burns and Plastic Surgery, the Fourth Medical Center of PLA General Hospital, Beijing, PR China
| | - Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD, USA
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, PR China.
| |
Collapse
|
16
|
Naseem A, Akhtar S, Ismail T, Qamar M, Sattar DES, Saeed W, Esatbeyoglu T, Bartkiene E, Rocha JM. Effect of Growth Stages and Lactic Acid Fermentation on Anti-Nutrients and Nutritional Attributes of Spinach ( Spinacia oleracea). Microorganisms 2023; 11:2343. [PMID: 37764187 PMCID: PMC10535161 DOI: 10.3390/microorganisms11092343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Spinach (Spinacia oleracea) is a winter-season green, leafy vegetable grown all over the world, belonging to the family Amaranthus, sub-family Chenopodiaceae. Spinach is a low-caloric food and an enormous source of micronutrients, e.g., calcium, folates, zinc, retinol, iron, ascorbic acid and magnesium. Contrarily, it also contains a variety of anti-nutritional factors, e.g., alkaloids, phytates, saponins, oxalates, tannins and many other natural toxicants which may hinder nutrient-absorption. This study was aimed at investigating the effect of fermentation on improving the nutrient-delivering potential of spinach and mitigating its burden of antinutrients and toxicants at three growth stages: the 1st growth stage as baby leaves, the 2nd growth stage at the coarse stage, and the 3rd growth stage at maturation. The results revealed the significant (p < 0.05) effect of fermentation on increasing the protein and fiber content of spinach powder from 2.53 to 3.53% and 19.33 to 22.03%, respectively, and on reducing total carbohydrate content from 52.92 to 40.52%; the effect was consistent in all three growth stages. A significant decline in alkaloids (6.45 to 2.20 mg/100 g), oxalates (0.07 mg/100 g to 0.02 mg/100 g), phytates (1.97 to 0.43 mg/100 g) and glucosinolates (201 to 10.50 µmol/g) was observed as a result of fermentation using Lactiplantibacillus plantarum. Fermentation had no impact on total phenolic content and the antioxidant potential of spinach, as evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays. This study proposes fermentation as a safer bioprocess for improving the nutrient-delivering potential of spinach, and suggests processed powders made from spinach as a cost-effective complement to existing plant proteins.
Collapse
Affiliation(s)
- Adila Naseem
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Saeed Akhtar
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Tariq Ismail
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Muhammad Qamar
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Dur-e-shahwar Sattar
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Wisha Saeed
- Department of Food Science and Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60000, Pakistan; (A.N.); (S.A.); (M.Q.); (D.-e.-s.S.); (W.S.)
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Elena Bartkiene
- Department of Food Safety and Quality, Faculty of Veterinary, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania;
- Faculty of Animal Sciences, Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
17
|
Kumari N, Kumar M, Chaudhary N, Zhang B, Radha, Chandran D, Joshi S, Singh D, Dey A, Rajalingam S, Natarajan K, Muthukumar M, Mohankumar P, Sheri V, Dhumal S, Lorenzo JM. Exploring the Chemical and Biological Potential of Jamun (Syzygium cumini (L.) Skeels) Leaves: A Comprehensive Review. Chem Biodivers 2023; 20:e202300479. [PMID: 37667613 DOI: 10.1002/cbdv.202300479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
Leaves of jamun collected as agro by-produce during the cultivation of jamun is traditionally used as ayurvedic medicine to treat diabetes, gall bladder stones and other ailments. Most of the beneficial effects of jamun leaves are associated with phytochemicals found in jamun leaves such as gallic acid, tannins, mallic acid, flavonoids, essential oils, jambolin, ellagic acid, jambosine, antimellin and betulinic acid. Jamun possess curative activities like anticancer, antidiabetic, antifertility, anti-inflammatory, antidiarrheal, antimicrobial, antinociceptive, antioxidant, antiradiation, chemotherapeutic, and gastroprotective. The main goal of this review article is to provide information on the nutritional content, phytochemical composition and health promoting properties of jamun leaves. The review of literature based on the phytochemical composition and health promoting benefits of the jamun leaves, suggests that leaves can be used as potential constituent in the formulation of pharmacological drugs. From the review literature it is found that clinical, in-vivo, in-vitro studies are still required to check the health promoting effects of jamun leaves extracts on humans.
Collapse
Affiliation(s)
- Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR- Central Institute for Research on Cotton Technology, Mumbai, 400019, India
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Nisha Chaudhary
- Department of Food Science and Technology, College of Agriculture, Nagaur, Agriculture University, Jodhpur, 341001, Rajasthan, India
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad, 679335, India
| | - Shourabh Joshi
- Department of Plant Biotechnology, Agriculture University, Jodhpur, 342304, India
| | - Daljeet Singh
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, 642109, Tamil Nadu, India
| | - Krishnaprabu Natarajan
- Department of Agronomy, VIT School of Agricultural Innovations and Advanced Learning, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Muthamilselvan Muthukumar
- Department of Agricultural Entomology, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu, 603201, India
| | - Pran Mohankumar
- School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, 27858, USA
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, Maharashtra, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n○ 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| |
Collapse
|
18
|
Das G, Nath R, Das Talukdar A, Ağagündüz D, Yilmaz B, Capasso R, Shin HS, Patra JK. Major Bioactive Compounds from Java Plum Seeds: An Investigation of Its Extraction Procedures and Clinical Effects. PLANTS (BASEL, SWITZERLAND) 2023; 12:1214. [PMID: 36986906 PMCID: PMC10057433 DOI: 10.3390/plants12061214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Java plum is widely recognized as a plant with valuable medicinal properties, originating from Indonesia and India and distributed globally in the tropic and sub-tropic regions of the world. The plant is rich in alkaloids, flavonoids, phenyl propanoids, terpenes, tannins, and lipids. The phytoconstituents of the plant seeds possess various vital pharmacological activities and clinical effects including their antidiabetic potential. The bioactive phytoconstituents of Java plum seeds include jambosine, gallic acid, quercetin, β-sitosterol, ferulic acid, guaiacol, resorcinol, p-coumaric acid, corilagin, ellagic acid, catechin, epicatechin, tannic acid, 4,6 hexahydroxydiphenoyl glucose, 3,6-hexahydroxy diphenoylglucose, 1-galloylglucose, and 3-galloylglucose. Considering all the potential beneficial effects of the major bioactive compounds present in the Jamun seeds, in the current investigation, the specific clinical effects and the mechanism of action for the major bioactive compounds along with the extraction procedures are discussed.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Birsen Yilmaz
- Department of Biological Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, Telangana, India
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
19
|
Saber FR, Munekata PES, Rizwan K, El-Nashar HAS, Fahmy NM, Aly SH, El-Shazly M, Bouyahya A, Lorenzo JM. Family Myrtaceae: The treasure hidden in the complex/diverse composition. Crit Rev Food Sci Nutr 2023; 64:6737-6755. [PMID: 36748791 DOI: 10.1080/10408398.2023.2173720] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myrtaceae is one of the most important plants families, being regarded as the eighth largest flowering plant family. It includes many genera of utmost ecological and economical importance distributed all over the world. This review aimed to report the latest studies on this family focusing on certain widely used plants including Eucalyptus sp., Eugenia sp. (Eugenia uniflora, Eugenia sulcata), Syzygium sp. (Syzygium aromaticum and Syzygium cumini), Psidium sp., Pimenta dioica, Myrtus sp. (Myrtus communis), Myrciaria sp. and Melaleuca alternifolia. The extraction of bioactive compounds has been evolving through the optimization of conventional methods and the use of emerging technologies. Supercritical CO2 was applied for essential oils and ultrasound for polyphenols leading to extracts and essential oils rich in bioactive compounds. Advances in the field of encapsulation and delivery systems showed promising results in the production of stable essential oils nanoemulsions and liposomes and the production of plant extracts in the form of nanoparticles. Moreover, a significant increase in the number of patents was noticed especially the application of Myrtaceae extracts in the pharrmacuetucal field. The applications of ceratin plants (Pimenta dioica, Melaleuca alternifolia, Syzygium aromaticum essential oils or Myrciaria cauliflora peel extract) in food area (either as a free or encapsulated form) also showed interesting results in limiting microbial spoilage of fresh meat and fish, slowing oxidative degradation in meat products, and inhibiting aflatoxin production in maize. Despite the massive literature on Myrtaceae plants, advances are still necessary to optimize the extraction with environmentally friendly technologies and carry out risk assessment studies should be accomplished to harness the full potential in food, industrial and pharmaceutical applications.
Collapse
Affiliation(s)
- Fatema R Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
20
|
Jamun (Syzygium cumini (L.) Skeels) Seed: A Review on Nutritional Profile, Functional Food Properties, Health-Promoting Applications, and Safety Aspects. Processes (Basel) 2022. [DOI: 10.3390/pr10112169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Jamun (Syzygium cumini L. Skeels) is highly perishable with a very short shelf life, hence, jamun fruit is either consumed fresh as soon as it is harvested or converted to value-added products such as jam, wine, juice, and jellies. The processing of jamun fruit generates a large quantity of seeds as the primary waste. Jamun seeds are a rich source of macronutrients such as carbohydrates, proteins, lipids, minerals, and vitamins, thus making them an important ingredient in the food industry. The valorization of underutilized, nutritionally rich byproducts of the food processing industry has been providing new ways for unlocking their potential in the functional food industry or therapeutic food formulations. This review presents a detailed nutritional profile of jamun seeds and its potent application in the food industry as a possible functional ingredient. Along with its beneficial nutritional profile, the review also throws light upon the safety aspects associated with jamun seed consumption along with its acceptable daily intake. Safety and toxicity studies have motivated researchers and industrialists to search for possible applications in the food industry. Jamun seeds with array of nutritional benefits can be an important functional ingredient; however, further extensive research is necessary to find suitable levels of application of jamun seed in food products for harnessing its nutritional potential without affecting the products’ sensory palatability.
Collapse
|
21
|
Nadeem HR, Akhtar S, Ismail T, Qamar M, Sestili P, Saeed W, Azeem M, Esatbeyoglu T. Antioxidant Effect of Ocimum basilicum Essential Oil and Its Effect on Cooking Qualities of Supplemented Chicken Nuggets. Antioxidants (Basel) 2022; 11:1882. [PMID: 36290605 PMCID: PMC9598151 DOI: 10.3390/antiox11101882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/23/2022] Open
Abstract
A commonly observed chicken meat issue is its lipid oxidation that leads to deterioration of its organoleptic and nutritional properties and its further-processed products. Basil (Ocimum basilicum L.) is one of the traditional culinary herbs exhibiting food preservation properties. The current study investigated the essential oil composition, antioxidant activity and in vitro cytotoxic capacity of the essential oil of basil indigenous to Pakistan. GC-MS analysis of the essential oil revealed the presence of 59 compounds that constituted 98.6% of the essential oil. O. basilicum essential oil (OB-EO) exhibited excellent antioxidant activity, i.e., IC50 5.92 ± 0.15 µg/mL as assayed by the DPPH assay, 23.4 ± 0.02 µmoL Fe/g by FRAP, and 14.6 ± 0.59% inhibition by H2O2. The brine shrimp lethality assay identified an average mortality of ~18% with OB-EO at 10-1000 µg/mL, while that of the same concentration range of the standard drug (etoposide) was 72%. OB-EO was found to be non-toxic to HeLa and PC-3 cell lines. TBARS contents were significantly decreased with increase of OB-EO in chicken nuggets. The lowest TBARS contents were recorded in nuggets supplemented with 0.3% OB-EO, whereas the highest overall acceptability score was marked to the treatments carrying 0.2% OB-EO. The results suggest OB-EO as a promising carrier of bioactive compounds with a broad range of food preservation properties, and which has a sensory acceptability threshold level for chicken nuggets falling between 0.2-0.3% supplementation. Future research must investigate the antibacterial impact of OB-EO on meat products preserved with natural rather than synthetic preservatives.
Collapse
Affiliation(s)
- Hafiz Rehan Nadeem
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Piero Sestili
- Department of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy
| | - Wisha Saeed
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Azeem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbotabad 22060, Pakistan
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| |
Collapse
|
22
|
Rani A, Uzair M, Ali S, Qamar M, Ahmad N, Abbas MW, Esatbeyoglu T. Dryopteris juxtapostia Root and Shoot: Determination of Phytochemicals; Antioxidant, Anti-Inflammatory, and Hepatoprotective Effects; and Toxicity Assessment. Antioxidants (Basel) 2022; 11:1670. [PMID: 36139744 PMCID: PMC9495791 DOI: 10.3390/antiox11091670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
An estimated 450 species of Dryopteris in the Dryoperidaceae family grow in Japan, North and South Korea, China, Pakistan, and Kashmir. This genus has been reported to have biological capabilities; however, research has been conducted on Dryopteris juxtapostia. Therefore, with the present study, we aimed to exploring the biological potential of D. juxtapostia root and shoot extracts. We extracted dichloromethane and methanol separately from the roots and shoots of D. juxtapostia. Antioxidant activity was determined using DPPH, FRAP, and H2O2 assays, and anti-inflammatory activities were evaluated using both in vitro (antiurease activity) and in vivo (carrageenan- and formaldehyde-induced paw edema) studies. Toxicity was evaluated by adopting a brine shrimp lethality assay followed by determination of cytotoxic activity using an MTT assay. Hepatoprotective effects of active crude extracts were examined in rats. Activity-bearing compounds were tentatively identified using LC-ESI-MS/MS analysis. Results suggested that D. juxtapostia root dichloromethane extract exhibited better antioxidant (DPPH, IC50 of 42.0 µg/mL; FRAP, 46.2 mmol/g; H2O2, 71% inhibition), anti-inflammatory (urease inhibition, 56.7% at 50 µg/mL; carrageenan-induced edema inhibition, 61.7% at 200 µg/mL; formaldehyde-induced edema inhibition, 67.3% at 200 µg/mL), brine shrimp % mortality (100% at 1000 µg/mL), and cytotoxic (HeLa cancer, IC50 of 17.1 µg/mL; prostate cancer (PC3), IC50 of 45.2 µg/mL) effects than D. juxtapostia root methanol extract. D. juxtapostia shoot dichloromethane and methanol extracts exhibited non-influential activity in all biological assays and were not selected for hepatoprotective study. D. juxtapostia root methanol extract showed improvement in hepatic cell structure and low cellular infiltration but, in contrast the dichloromethane extract, did not show any significant improvement in hepatocyte morphology, cellular infiltration, or necrosis of hepatocytes in comparison to the positive control, i.e., paracetamol. LC-ESI-MS/MS analysis showed the presence of albaspidin PP, 3-methylbutyryl-phloroglucinol, flavaspidic acid AB and BB, filixic acid ABA and ABB, tris-desaspidin BBB, tris-paraaspidin BBB, tetra-flavaspidic BBBB, tetra-albaspidin BBBB, and kaempferol-3-O-glucoside in the dichloromethane extract, whereas kaempferol, catechin, epicatechin, quinic acid, liquitrigenin, and quercetin 7-O-galactoside in were detected in the methanol extract, along with all the compounds detected in the dichloromethane extract. Hence, D. juxtapostia is safe, alongside other species of this genus, although detailed safety assessment of each isolated compound is obligatory during drug discovery.
Collapse
Affiliation(s)
- Abida Rani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Uzair
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Shehbaz Ali
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Naveed Ahmad
- Multan College of Food & Nutrition Sciences, Multan Medical and Dental College, Multan 60000, Pakistan
| | - Malik Waseem Abbas
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| |
Collapse
|