1
|
Liu Y, Al-Dalali S, Hu Y, Zhao D, Wang J, He Z. Effect of different processing steps in the production of beer fish on volatile flavor profile and their precursors determined by HS-GC-IMS, HPLC, E-nose, and E-tongue. Food Chem X 2024; 23:101623. [PMID: 39100245 PMCID: PMC11295953 DOI: 10.1016/j.fochx.2024.101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Beer fish is characterized by its distinctive spicy flavor and strong beer aroma. Currently, there is a lack of comprehensive research analyzing the changes in taste and volatile compounds that occur during the processing of beer fish. Thus, this study used HS-GC-IMS, electronic tongue, and electronic nose to investigate the changes in flavor components during various processing stages of beer fish. The obtained results were subsequently analyzed using multivariate statistical analysis. The results showed that the final beer fish product (SF) had the greatest amount of free amino acids (888.28 mg/100 g), with alanine, glutamic acid, and glycine contributing to the taste of SF. The inosine monophosphate (IMP) content of beer fish meat varied noticeably depending on processing stages, with deep-fried fish (FF) having the greatest IMP content (61.93 mg/100 g), followed by the final product (SF) and ultrasonic-cured fish (UF). A total of 67 volatiles were detected by GC-IMS, mainly consisting of aldehydes, ketones, and alcohols, of which aldehydes accounted for >37%, which had a great influence on the volatile flavor of beer fish. The flavor components' composition varied noticeably depending on the stage of processing. PLS-DA model screened 35 volatile flavor components (VIP > 1) as markers; the most significant differences were 1-propanethiol, isoamyl alcohol, ethanol, and eucalyptol. Ultrasonic processing, frying, and soaking sauce can significantly improve the formation of flavor compounds, resulting in a notable enhancement of the final beer fish's umami taste and overall flavor quality.
Collapse
Affiliation(s)
- Yingying Liu
- School of Food and Health, Guilin Tourism University, Guilin 541006, China
- Guangxi Zhuang Autonomous Region Industrial Processing and Nutrition Safety Engineering Research Center of Cassia, Guilin 541006, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi cuisine, Guilin Tourism University, Guilin 541006, China
- Tourism and Culinary Institute, Yangzhou University, Yangzhou 225127, China
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin 541006, China
- Guangxi Zhuang Autonomous Region Industrial Processing and Nutrition Safety Engineering Research Center of Cassia, Guilin 541006, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi cuisine, Guilin Tourism University, Guilin 541006, China
| | - Yan Hu
- School of Food and Health, Guilin Tourism University, Guilin 541006, China
- Guangxi Zhuang Autonomous Region Industrial Processing and Nutrition Safety Engineering Research Center of Cassia, Guilin 541006, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi cuisine, Guilin Tourism University, Guilin 541006, China
- Tourism and Culinary Institute, Yangzhou University, Yangzhou 225127, China
| | - Dong Zhao
- School of Food and Health, Guilin Tourism University, Guilin 541006, China
- Guangxi Zhuang Autonomous Region Industrial Processing and Nutrition Safety Engineering Research Center of Cassia, Guilin 541006, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi cuisine, Guilin Tourism University, Guilin 541006, China
| | - Jinghan Wang
- School of Food and Health, Guilin Tourism University, Guilin 541006, China
- Guangxi Zhuang Autonomous Region Industrial Processing and Nutrition Safety Engineering Research Center of Cassia, Guilin 541006, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi cuisine, Guilin Tourism University, Guilin 541006, China
| | - Zhigui He
- School of Food and Health, Guilin Tourism University, Guilin 541006, China
- Guangxi Zhuang Autonomous Region Industrial Processing and Nutrition Safety Engineering Research Center of Cassia, Guilin 541006, China
- Key Laboratory of Industrialized Processing and Safety of Guangxi cuisine, Guilin Tourism University, Guilin 541006, China
| |
Collapse
|
2
|
Liu M, Zhou J, Qin J, Qin Z, Jiang J, Yu F, Chen M, Liu X, Zhang M. Evaluation of High Vacuum Flavor Extraction Device as a Novel Technique for the Extraction of Volatile Compounds. Foods 2024; 13:3206. [PMID: 39410239 PMCID: PMC11476022 DOI: 10.3390/foods13193206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
In this study, a high vacuum flavor extraction (HVE) device was developed to address the limitations of traditional extraction methods, such as extended extraction times and artifact generation during high-temperature processes. Firstly, the repeatability and precision of the HVE method were evaluated through quantitative analysis of twelve volatile odor compounds across seven replicate extractions using gas chromatography-flame ionization detection (GC-FID). The results showed that the HVE system achieved a mean relative standard deviation (RSD) of 11.60 ± 1.79% and a recovery rate of 90.55 ± 4.56%, demonstrating its precision and reproducibility. Secondly, the performance of HVE was compared with solvent-assisted flavor evaporation (SAFE) and simultaneous distillation-extraction (SDE) for extracting flavor compounds from fried tilapia mince. The results indicated that HVE was more effective, particularly in extracting aldehydes and pyrazines, which are key contributors to the flavor profile. Finally, sensory evaluations supported these findings, showing that the odor profiles obtained through HVE were most similar to the original sample, with a similarity score of 72.55%, compared to 69.25% for SAFE and 60.29% for SDE. These findings suggest that HVE is a suitable method for the extraction and analysis of volatile compounds in complex food matrices such as fried tilapia mince.
Collapse
Affiliation(s)
- Mingyuan Liu
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Jie Zhou
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Jingkai Qin
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Zhongyi Qin
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Jiequn Jiang
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Futian Yu
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Mei Chen
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Xiaoling Liu
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Meishuo Zhang
- Department of Food Science, Guangxi University, No. 100, Daxue Road, Nanning 530004, China; (M.L.); (J.Z.); (J.Q.); (Z.Q.); (J.J.); (F.Y.); (M.C.); (M.Z.)
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| |
Collapse
|
3
|
Silva NTF, Venancio AR, Martos ET, Oliveira ACG, Oliveira AAA, Mutz YDS, Nunes CA, Mondragón-Bernal OL, Alves JGLF. Fish Fillet Analogue Using Formulation Based on Mushroom ( Pleurotus ostreatus) and Enzymatic Treatment: Texture, Sensory, Aromatic Profile and Physicochemical Characterization. Foods 2024; 13:2358. [PMID: 39123549 PMCID: PMC11311425 DOI: 10.3390/foods13152358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The growing demand for alternative sources of non-animal proteins has stimulated research in this area. Mushrooms show potential in the innovation of plant-based food products. In this study, the aim was to develop prototype fish fillets analogues from Pleurotus ostreatus mushrooms applying enzymatic treatment (β-glucanase and transglutaminase-TG). A Plackett-Burman 20 experimental design was used to optimize forty variables. Oat flour (OF) exerted a positive effect on the hardness and gumminess texture parameters but a negative effect on cohesiveness and resilience. Soy protein isolate (SPI) exhibited a positive effect on elasticity, gumminess and chewiness, while acacia gum had a negative effect on elasticity, cohesiveness and resilience. After sensory analysis the assay with 1% cassava starch, 5% OF, 5% SPI, 0.1% transglutaminase (240 min/5 °C), 1% coconut oil, 1% soybean oil, 0.2% sodium tripolyphosphate, 0.6% β-glucanase (80 °C/10 min) and without β-glucanase inactivation was found to exhibit greater similarity to fish fillet. The classes hydrocarbons, alcohols and aldehydes are the predominant ones in aromatic profile analysis by chromatography and electronic nose. It is concluded that a mushroom-based analogue of fish fillet can be prepared using enzymatic treatment with TG.
Collapse
Affiliation(s)
- Nayara Thalita Ferreira Silva
- Postgraduate Program in Food Engineering, Department of Food Science, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, Brazil;
| | - Andreia Reis Venancio
- Department of Nutrition, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, Brazil;
| | - Emerson Tokuda Martos
- Department of Food Science, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, Brazil; (E.T.M.); (A.A.A.O.); (Y.d.S.M.); (C.A.N.); (O.L.M.-B.)
| | | | - Ana Alice Andrade Oliveira
- Department of Food Science, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, Brazil; (E.T.M.); (A.A.A.O.); (Y.d.S.M.); (C.A.N.); (O.L.M.-B.)
| | - Yhan da Silva Mutz
- Department of Food Science, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, Brazil; (E.T.M.); (A.A.A.O.); (Y.d.S.M.); (C.A.N.); (O.L.M.-B.)
| | - Cleiton Antonio Nunes
- Department of Food Science, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, Brazil; (E.T.M.); (A.A.A.O.); (Y.d.S.M.); (C.A.N.); (O.L.M.-B.)
| | - Olga Lucía Mondragón-Bernal
- Department of Food Science, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, Brazil; (E.T.M.); (A.A.A.O.); (Y.d.S.M.); (C.A.N.); (O.L.M.-B.)
| | - José Guilherme Lembi Ferreira Alves
- Department of Food Science, Federal University of Lavras, P.O. Box 3037, Lavras 37203-202, Brazil; (E.T.M.); (A.A.A.O.); (Y.d.S.M.); (C.A.N.); (O.L.M.-B.)
| |
Collapse
|
4
|
Wang Y, Wang J, Cai Z, Sang X, Deng W, Zeng L, Zhang J. Combined of plasma-activated water and dielectric barrier discharge atmospheric cold plasma treatment improves the characteristic flavor of Asian sea bass (Lates calcarifer) through facilitating lipid oxidation. Food Chem 2024; 443:138584. [PMID: 38306903 DOI: 10.1016/j.foodchem.2024.138584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
To explore the combination effects of plasma-activated water and dielectric barrier discharge (PAW-DBD) cold plasma treatment on the formation of volatile flavor and lipid oxidation in Asian sea bass (ASB), the volatile flavor compounds and lipid profiles were characterized by gas chromatography-ion mobility spectrometry and LC-MS-based lipidomics analyses. In total, 38 volatile flavor compound types were identified, and the PAW-DBD group showed the most kinds of volatile components with a significant (p < 0.05) higher content in aldehydes, ketones, and alcohols. A total of 1500 lipids was detected in lipidomics analysis, phosphatidylcholine was the most followed by triglyceride. The total saturated fatty acids content in PAW-DBD group increased by 105.02 μg/g, while the total content of unsaturated fatty acids decreased by 275.36 μg/g. It can be concluded that the PAW-DBD processing increased both the types and amounts of the volatile flavor in ASB and promoted lipid oxidation by altering lipid profiles.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Zhicheng Cai
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaohan Sang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wentao Deng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lixian Zeng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jianhao Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210014, China.
| |
Collapse
|
5
|
Karbsri W, Hamzeh A, Yongsawatdigul J. Changes in volatile compounds and lipid oxidation in various tissues of Nile tilapia (Oreochromis niloticus) during ice storage. J Food Sci 2024; 89:2261-2276. [PMID: 38433381 DOI: 10.1111/1750-3841.17013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Changes in the lipid oxidation and volatile compounds of a variety of tilapia tissues (Oreochromis niloticus) including the muscle, gills, and skin during ice storage were investigated by evaluating peroxide values (PVs), lipoxygenase (LOX) activity, fatty acid (FA) composition, and volatile substances. LOX activity and PV were determined in the gills, skin, and muscles throughout 9 days of storage in ascending order to the extended storage time. The highest level of LOX activity was found in the gills, whereas the highest PV was determined in the skin. FA content of all tissues decreased during the storage period. Oleic acid was the predominant monounsaturated fatty acid, whereas linoleic acid and docosahexaenoic acid were the main polyunsaturated fatty acids and omega-3 in all tissues. The fish gills were shown to have the highest level of volatile compounds followed by the skin and muscle, based on headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry. Principal component analysis indicated gradual changes in the volatile compound composition with increasing storage time. 2-Butanone and nonanal in the muscle, 6-methyl-2-heptanone and 2-nonenal in the gills, and 1-heptanol, and 1-nonanol in the skin were found to be the potential freshness indicators. In addition, hexanal could be a general potential marker for measuring the degree of lipid oxidation in all tissues. PRACTICAL APPLICATION: Understanding the volatile compound formation related to lipid oxidation within storage time at various tissues of tilapia could be critical to the side-stream processing to yield the desired quality.
Collapse
Affiliation(s)
- Wilaiwan Karbsri
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
6
|
Fu H, Feng Q, Qiu D, Shen X, Li C, He Y, Shang W. Improving the flavor of tilapia fish head soup by adding lipid oxidation products and cysteine. Food Chem 2023; 429:136976. [PMID: 37517226 DOI: 10.1016/j.foodchem.2023.136976] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Deodorization and umami enhancement are important challenges in promoting and consuming fish products. The aim of this study was to establish whether exogenous addition of oxidized lipids and cysteine can improve the fishy, umami and create a characteristic flavor in tilapia fish head soup. The results revealed that adding oxidized lipids and cysteine enhanced the sensory attributes of fish head soup and promoted the production of pleasant-tasting amino acids and fewer bitter amino acids in the Maillard reaction. Additionally, the combination increased the levels of well-flavored aldehydes, esters, heterocyclic compounds and less hydrocarbons in the fish head soup. Among the 13 volatile compounds screened, nine were identified as characteristic aromas of fish head soup, including nonanal, (E,E)-2,4-decadienal, 1-octen-3-ol, (E)-2-decenal, acetic acid, hexanal, heptanal, 2-octenal, and decanal. Exogenous lipid oxidation products, fatty acid oxidation, and Maillard reaction can improve the aroma and umami of tilapia fish head soup.
Collapse
Affiliation(s)
- Huixian Fu
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Qiaohui Feng
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Dan Qiu
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| | - Yanfu He
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China.
| | - Wenting Shang
- College of Food Science and Engineering, Hainan University, 58th Renmin Road, Meilan District, Haikou 570100, Hainan Province, China
| |
Collapse
|
7
|
Ochieng BO, Anyango JO, Nduko JM, Mudalungu CM, Cheseto X, Tanga CM. Aroma characterization and consumer acceptance of four cookie products enriched with insect (Ruspolia differens) meal. Sci Rep 2023; 13:11145. [PMID: 37429929 PMCID: PMC10333276 DOI: 10.1038/s41598-023-38166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023] Open
Abstract
This research aims to advance knowledge on the impact of four processing methods on volatile compounds from insect-based baked products (cookies) to provide insights on consumer acceptance. Samples were exposed to double step enzyme digestive test, volatiles characterized through headspace analysis, while semi-trained panelists were recruited for the sensory test. Blanched and boiled samples of R. differens had considerably higher digestibility (83.42% and 81.61%, respectively) (p < 0.05) than toasted and deep-fried samples. Insect-based cookie products integrated with blanched and boiled R. differens meal expressed higher digestibility (80.41% and 78.73%, respectively) that was comparable to that of commercial cookie products (control cookies-CTRC with 88.22%). Key volatile compounds common between the various cookie products included, nonanal, octanal, methyl-pyrazine, hexanal, tetradecane, 2-pentylfuran, 2-heptanone, 2E-octenal, 2E-heptenal and dodecane. Among the volatile compounds, pleasant aromas observed were 2E,4E-dodecadienal, pentanal, octanal, methyl pyrazine, furfurals, benzaldehyde, and 2-pentyl furan, which were more pronounced in cookies fortified with boiled, toasted and deep-fried R. differens meal. There was a greater resemblance of sensory characteristics between control cookies and those fortified with deep-fried R. differens. These findings underscore the significant influence of aroma compounds on consumer acceptability and preference for insect-based baked food products, which allows for future process-modification of innate aromas of insect-based meals to produce high-valued pleasant consumer driven market products.
Collapse
Affiliation(s)
- Brian O Ochieng
- International Centre of Insect Physiology and Ecology (Icipe), P.O. BOX 30772, Nairobi, 00100, Kenya.
- Department of Dairy and Food Science and Technology, Egerton University, P.O. Box 536, Njoro, 20115, Kenya.
| | - Joseph O Anyango
- Department of Dairy and Food Science and Technology, Egerton University, P.O. Box 536, Njoro, 20115, Kenya
| | - John M Nduko
- Department of Dairy and Food Science and Technology, Egerton University, P.O. Box 536, Njoro, 20115, Kenya
| | - Cynthia M Mudalungu
- International Centre of Insect Physiology and Ecology (Icipe), P.O. BOX 30772, Nairobi, 00100, Kenya
| | - Xavier Cheseto
- International Centre of Insect Physiology and Ecology (Icipe), P.O. BOX 30772, Nairobi, 00100, Kenya
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (Icipe), P.O. BOX 30772, Nairobi, 00100, Kenya.
| |
Collapse
|
8
|
Chen J, Shi C, Xu J, Wang X, Zhong J. Correlation between physicochemical properties and volatile compound profiles in tilapia muscles subjected to four different thermal processing techniques. Food Chem X 2023; 18:100748. [PMID: 37360973 PMCID: PMC10285089 DOI: 10.1016/j.fochx.2023.100748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
This work studied the physicochemical properties and odor profiles of tilapia muscles after exposure to four types of thermal processing methods: microwaving, roasting, boiling, or steaming. The effect of thermal processing on textural properties followed a pH-water state-water content-tissue microstructure-mass loss-textural properties route, expressed in the following manner: microwaving > roasting > steaming ≈ boiling. After processing, muscle pH increased from 6.59 ± 0.10 to 6.73 ± 0.04-7.01 ± 0.06, and hardness changed from 1468.49 ± 180.77 g to 452.76 ± 46.94-10723.66 ± 2898.46 g. Gas chromatography-based E-nose analysis confirmed that these methods had significant odor fingerprint effects on the tilapia muscles. Finally, the combined analysis of headspace solid-phase microextraction-gas chromatography-mass spectrometry, statistical MetaboAnalyst, and odor activity value showed that the microwaved, roasted, steamed, and boiled tilapia muscles had, respectively, three (hexanal, nonanal, and decanal), four (2-methyl-butanal, 3-methyl-butanal, decanal, and trimethylamine), one (2-methyl-butanal), and one (decanal) relatively important volatile compounds.
Collapse
Affiliation(s)
- Jiahui Chen
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jiamin Xu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
9
|
Fang MC, Chin PSY, Sung WC, Chen TY. Physicochemical and Volatile Flavor Properties of Fish Skin under Conventional Frying, Air Frying and Vacuum Frying. Molecules 2023; 28:molecules28114376. [PMID: 37298852 DOI: 10.3390/molecules28114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this study was to investigate the physicochemical characteristics and volatile flavor of fried tilapia skins under three frying methods. Conventional deep-fat frying usually increases the oil content of the fried fish skin and leads to lipid oxidation, which reduces the product quality. Alternative frying methods, such as air frying for 6 and 12 min under 180 °C (AF6, and AF12) and vacuum frying at 0.085 MPa for 8 and 24 min under 120 °C (VF8, and VF24) were compared to conventional frying for 2 and 8 min under 180 °C (CF2, and CF8) for tilapia skin. Physical properties of fried skin, such as the moisture content, water activity, L* values and breaking force decreased under all frying methods, while the lipid oxidation and a*, b* values increased with the increase in frying time. In general, VF offered higher hardness of product compared to AF which had a lower breaking force. Especially AF12 and CF8 had the lowest breaking force, which indicated higher crispness. For the oil quality inside the product, AF and VF reduced conjugated dienes formation and retarded oxidation compared to CF. The results of the flavor compositions of fish skin measured using gas chromatography mass spectrometry (GC/MS) with solid phase microextraction (SPME) showed that CF obtained higher unpleasant oily odor (nonanal, 2,4-decadienal, etc.), while AF presented greater grilling flavor (pyrazine derivatives). Because fish skin fried by AF only relied on hot air, Maillard reaction derived compounds, such as methylpyrazine, 2,5-dimethylpyrazine, and benzaldehyde were the leading flavors. This made the aroma profiles of AF very different from VF and CF. Among all the approaches, AF and VF developed lower oil content, mild fat oxidation and better flavor attributes, which proves their practical applications for frying tilapia fish skin.
Collapse
Affiliation(s)
- Ming-Chih Fang
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Peng-Shih-Yun Chin
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Wen-Chieh Sung
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Tai-Yuan Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| |
Collapse
|
10
|
Development of Flavor and Taste Components of Sous-Vide-Cooked Nile Tilapia ( Oreochromis niloticus) Fillet as Affected by Various Conditions. Foods 2022; 11:foods11223681. [PMID: 36429273 PMCID: PMC9689723 DOI: 10.3390/foods11223681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
This study aims to shed light on the association between non-volatile and volatile compounds related to flavor/taste characteristics as well as sensory acceptability of Nile tilapia fillet (Oreochromis niloticus) cooked by various sous-vide (SV) conditions (50−60 ℃, 30−60 min), with fish cooked with boiling water used as control. Higher temperatures and longer processing times of SV cooking led to greater protein and lipid oxidation as indicated by the increase in total sulfhydryl (-SH), carbonyl, free fatty acid (FFA) contents as well as peroxide values (PV) and thiobarbituric acid reactive substance (TBARS) values. The differences in flavor/taste components including adenosine triphosphate (ATP)-related compounds, free amino acids (FAAs) and volatiles were also obtained, which directly affect sensory acceptability as evaluated by using the hedonic scale. Based on principal component analysis (PCA) results, the acceptability score was strongly correlated with inosine monophosphate (IMP) and acetoin, which seem to be the most crucial flavor enhancers for cooked tilapia. Among all samples, tilapia processed at 60 °C for 45 and 60 min, which contained significantly higher IMP and acetoin (p < 0.05) than others, had significantly higher flavor-liking and overall-liking scores, with a more than 7.5 meaning for high acceptability (p < 0.05), indicating the optimal SV conditions for tilapia fillet. Overall, the present finding indicated that the SV-cooking technique, at the optimal conditions, can improve the meat quality of cooked fish, in terms of flavor/taste characteristics, compared with traditional cooking (control).
Collapse
|