1
|
Pan Y, Xue X, Wang Y, Wang J, Teng W, Cao J, Zhang Y. Effects of Different Preservation Techniques on Microbial and Physicochemical Quality Characteristics of Sauced Beef Under Chilled Storage. Foods 2025; 14:1175. [PMID: 40238350 PMCID: PMC11989084 DOI: 10.3390/foods14071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigates the effects of different preservation methods-tray packing (control), vacuum packing (T1), and tray packing with 2 mg/mL pepper essential oil (T2)-on the quality of sauced beef during 4 °C storage for 1, 5, 9, and 13 days. The results revealed that T2 significantly inhibited microbial growth, as reflected by reduced total aerobic counts (TACs), minimized lipid oxidation (indicated by lower thiobarbituric acid reactive substances (TBARSs)), and reduced protein degradation (evidenced by decreased total volatile basic nitrogen (TVB-N)). Additionally, T2 delayed the reduction in inosine-5'-monophosphate (IMP) and accumulation of hypoxanthine (Hx), effectively extending shelf life and preserving sensory quality. T1 also showed beneficial effects in limiting oxygen-related spoilage, as demonstrated by lower TAC and TBARS levels. In contrast, the control group showed limited effectiveness in preserving the quality of sauced beef, as indicated by higher microbial counts and more pronounced lipid and protein degradation. These findings provide a theoretical basis for improving sauced beef preservation by highlighting the effectiveness of different packaging methods and the potential of pepper essential oil as a natural preservative.
Collapse
Affiliation(s)
- Yiling Pan
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiangnan Xue
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Kanokruangrong S, Kebede B, Carne A, Stewart I, Bekhit AEDA. Metabolomic investigation of fresh beef, lamb and venison using nuclear magnetic resonance spectroscopy in relation to colour stability. Food Chem 2025; 463:141447. [PMID: 39357308 DOI: 10.1016/j.foodchem.2024.141447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
This study investigated changes in the metabolome of fresh beef, lamb, and venison in relation to colour stability during display storage. Changes in meat colour and metabolites in loin muscles (Longissimus lumborum) of beef, lamb and venison were determined under a simulated retail display at 4 °C. Metabolite analysis was performed using nuclear magnetic resonance (NMR) spectroscopy, and 27 metabolites were identified. The stability of fresh meat colour was found to be in the following order: beef > lamb > venison. Several trends were observed, and amino acids and metabolites involved in ATP generation were found to be the most important. Leucine, isoleucine and valine were increased, whereas succinate, inosine monophosphate and choline were decreased over the storage time of all three meat types (p < 0.05). As a reduction in succinate, inosine monophosphate and choline during storage were found for all three meat types, these metabolites could potentially be associated with colour stability.
Collapse
Affiliation(s)
| | - Biniam Kebede
- Department of Food Science, University of Otago PO Box 56, Dunedin 9054, New Zealand
| | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ian Stewart
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Alaa El-Din A Bekhit
- Department of Food Science, University of Otago PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
3
|
Xu C, Wang S, Bai J, Chen X, Shi Y, Hao J, Zhao B. Dynamic microbial community and metabolic profiling in refrigerated beef: Insights from diverse packaging strategies. Food Res Int 2024; 197:115170. [PMID: 39593381 DOI: 10.1016/j.foodres.2024.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/28/2024]
Abstract
Extending the shelf life of fresh beef is essential for meat industry. This study explored the microbial community succession, metabolic profile changes, and their interactions during refrigerated storage of beef under different packaging methods. The results showed that compared with air packaging (AP), vacuum packaging (CV) and vacuum skin packaging (VS) maintained higher microbial diversity over longer periods. Among 1,106 metabolites identified, lipids and lipid-like molecules were most prominent. Unique pathways in VS beef, such as oxidative phosphorylation and calcium signaling pathways, underscored its advantages in maintaining beef flavor and oxidation stability. Moreover, dozens of metabolites were identified as potential biomarkers of the treatment effects of different packaging methods. Correlation analysis presented a significant positive correlation between bacterial genera like Brochothrix, Acinetobacter, Serratia, and metabolites such as lipids, organic acids, and nucleotides. This research offers essential insights for optimizing product safety and extending shelf life in the future meat industry.
Collapse
Affiliation(s)
- Chenchen Xu
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Shouwei Wang
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China.
| | - Jing Bai
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Xiangning Chen
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing 102206, China
| | - Yuxuan Shi
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Jingyi Hao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China
| | - Bing Zhao
- China Meat Research Center, Beijing Academy of Food Sciences, Beijing the Key Laboratory of Meat Processing Technology, Beijing 100068, China.
| |
Collapse
|
4
|
Kowalczyk M, Domaradzki P, Skałecki P, Kaliniak-Dziura A, Stanek P, Teter A, Grenda T, Florek M. Use of sustainable packaging materials for fresh beef vacuum packaging application and product assessment using physicochemical means. Meat Sci 2024; 216:109551. [PMID: 38852287 DOI: 10.1016/j.meatsci.2024.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Packaging material should guarantee the longest possible shelf life of food and help to maintain its quality. The aim of the study was to assess the physicochemical changes taking place during 28-day ageing of beef steaks packed in two types of multilayer films containing biodegradable polymers - polylactic acid (NAT/PLA) and Mater-Bi® (NAT/MBI). The control group consisted of steaks packed in synthetic polyamide/polyethylene (PA/PE) film. The samples stored in NAT/PLA had significantly lower purge loss than the control samples and the lowest expressible water amount after 14 and 21 days. Following blooming, the most favourable colour was shown in steaks stored in NAT/MBI, with the highest values for the L*, a* and C* parameters and the R630/580 ratio, a high proportion of oxymyoglobin, and the lowest share of metmyoglobin. All steaks, regardless of the type of packaging material, had acceptable tenderness and were stable in terms of lipid oxidation.
Collapse
Affiliation(s)
- Marek Kowalczyk
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Piotr Domaradzki
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Piotr Skałecki
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Agnieszka Kaliniak-Dziura
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Piotr Stanek
- Department of Cattle Breeding and Genetic Resources Conservation, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Anna Teter
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Tomasz Grenda
- National Veterinary Research Institute, Partyzantow 57, 24-100 Pulawy, Poland.
| | - Mariusz Florek
- Department of Quality Assessment and Processing of Animal Products, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| |
Collapse
|
5
|
Krell J, Poveda-Arteaga A, Weiss J, Witte F, Terjung N, Gibis M. Influence of different storage atmospheres in packaging on color stability of beef. J Food Sci 2024; 89:5774-5787. [PMID: 39126691 DOI: 10.1111/1750-3841.17286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
The influence of storage atmosphere on the color development and myoglobin (Mb) redox state of beef was investigated. Beef samples were packaged in 6 different atmospheres including different degrees of vacuum, levels of oxygen, nitrogen, and a mixture with 20% CO2 and stored at 2°C for 14 days. Over this time, color and reflection of the packaged samples were measured. The used method allows quick, easy, and non-invasive measurement of the packaged samples, without using time consuming chemical assays. The method could be implemented in beef production lines, with potential for automatization. The data was used to illustrate the L*a*b* values for insights regarding qualitative color changes. Quantitative color changes were analyzed by calculation of color difference ΔE2000. Additionally, the relative levels of the deoxymyoglobin (DMb), oxymyoglobin (OMb) and metmyoglobin (MMb) were calculated from reflection spectra. The most important findings are: there is a strong correlation (rsp = 0.80 to 0.99 with one exception at rsp = 0.69 (high vacuum), p ≤ 0.05) between a* values and relative OMb levels. Storage atmospheres containing high oxygen concentrations lead to an attractive meat color, but a decreased overall color and Mb stability (ΔE = 5.02 (synthetic air) and ΔE = 2.23 (high oxygen) after 14 days of storage). Vacuum packaged samples are most stable in regards of color and Mb stability (ΔE = 1.79 (high vacuum) and ΔE = 1.63 (low vacuum) after 14 days of storage), but lack in the vibrant red color desired for sale. The experiments showed that color measurement can be a fast, non-invasive marker for meat quality. PRACTICAL APPLICATION: In this research article, six different storage atmospheres are compared regarding their influence on color stability and color quality of beef during storage in packaging. The results suggest which atmospheres to use in various sales-related scenarios. The method described can easily be applied in the meat industry to quickly monitor changes during storage and wet-aging without damaging the meat or opening the meat packages.
Collapse
Affiliation(s)
- Johannes Krell
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | | | - Jochen Weiss
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Franziska Witte
- DIL, German Institute of Food Technology, Quakenbrück, Germany
| | - Nino Terjung
- DIL, German Institute of Food Technology, Quakenbrück, Germany
| | - Monika Gibis
- Department of Food Material Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
6
|
Çelebi Y, Kavrut E, Bulut M, Çetintaş Y, Tekin A, Hayaloğlu AA, Alwazeer D. Incorporation of hydrogen-producing magnesium into minced beef meat protects the quality attributes and safety of the product during cold storage. Food Chem 2024; 448:139185. [PMID: 38574715 DOI: 10.1016/j.foodchem.2024.139185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
The impact of hydrogen (H2) producing magnesium (Mg) incorporation into minced beef meat (MBM) on the quality and safety of the product was investigated. The H2-producing Mg (H2-P-Mg)-incorporated MBMs were vacuumed (VP) and stored at 4 °C for 12 days. Other MBMs were vacuumed and gassed with H2 or N2. At the end of storage, the lowest browning index values were for H2 and H2-P-Mg samples. H2- PMg and VP methods generally decreased the counts of mesophilic and psychrotrophic bacteria and yeast molds and restricted the formation of thiobarbituric acid reactive substances and biogenic amines. Heat mapping, PCA, and multivariate analysis methods confirmed chemical analysis results. The volatile compounds were at their highest levels in the control samples at the end of storage, followed by H2, N2, H2-P-Mg, and VP samples. Using the H2-P-Mg method in MBM preparation could protect the quality characteristics and safety of the product during cold storage.
Collapse
Affiliation(s)
- Yasemin Çelebi
- Department of Food Processing, Eşme Vocational School, Uşak University, Uşak 64600, Türkiye
| | - Enes Kavrut
- Igdir Vocational School, Hotel, Restaurant and Catering Services Department, 76002, Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Igdir University, 76002 Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Yunus Çetintaş
- Food Analysis Application and Research Center, Research Laboratories Center, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye.
| | - Ali Tekin
- Department of Food Technology, Vocational School of Keban, Firat University, 23700 Keban, Elazig, Türkiye; Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Duried Alwazeer
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye; Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76002 Iğdır, Türkiye.
| |
Collapse
|
7
|
Olawore O, Ogunmola M, Desai S. Engineered Nanomaterial Coatings for Food Packaging: Design, Manufacturing, Regulatory, and Sustainability Implications. MICROMACHINES 2024; 15:245. [PMID: 38398974 PMCID: PMC10893406 DOI: 10.3390/mi15020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
The food industry is one of the most regulated businesses in the world and follows strict internal and regulated requirements to ensure product reliability and safety. In particular, the industry must ensure that biological, chemical, and physical hazards are controlled from the production and distribution of raw materials to the consumption of the finished product. In the United States, the FDA regulates the efficacy and safety of food ingredients and packaging. Traditional packaging materials such as paper, aluminum, plastic, and biodegradable compostable materials have gradually evolved. Coatings made with nanotechnology promise to radically improve the performance of food packaging materials, as their excellent properties improve the appearance, taste, texture, and shelf life of food. This review article highlights the role of nanomaterials in designing and manufacturing anti-fouling and antimicrobial coatings for the food packaging industry. The use of nanotechnology coatings as protective films and sensors to indicate food quality levels is discussed. In addition, their assessment of regulatory and environmental sustainability is developed. This review provides a comprehensive perspective on nanotechnology coatings that can ensure high-quality nutrition at all stages of the food chain, including food packaging systems for humanitarian purposes.
Collapse
Affiliation(s)
- Oluwafemi Olawore
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (O.O.); (M.O.)
| | - Motunrayo Ogunmola
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (O.O.); (M.O.)
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (O.O.); (M.O.)
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
8
|
Bernardez-Morales GM, Nichols BW, Douglas SL, Belk AD, Brandebourg TD, Reyes TM, Sawyer JT. Extended Storage of Beef Steaks Using Thermoforming Vacuum Packaging. Foods 2023; 12:2922. [PMID: 37569190 PMCID: PMC10418377 DOI: 10.3390/foods12152922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Extended storage duration often results in negative quality attributes of fresh or frozen beef steaks. This study focused on evaluating the fresh and cooked meat quality of beef steaks stored using vacuum packaging for 63 days. Steaks 2.54 cm thick were packaged into one of three thermoforming films VPA (250 µ nylon/EVOH/enhanced polyethylene coextrusion), VPB (250 µ nylon/EVOH/enhanced polyethylene coextrusion), or VPC (125 µ nylon/EVOH/enhanced/polyethylene coextrusion). Steaks placed in VPA were lighter (L*) and redder (a*) in surface color (p < 0.05) as the display period increased, whereas steaks packaged in VPB and VPC became darker. Yellowness, hue angle (Hue°), and chroma (C*) values were greater (p < 0.05) in steaks using VPC film as the storage period increased. Calculated spectral values of red to brown were greater (p < 0.05) for steaks in VPA and VPB than in VPC. However, steaks placed in VPC films contained greater (p < 0.05) forms of metmyoglobin and oxymyoglobin and lower calculated relative values of deoxymyoglobin. In addition, packaging treatment altered (p > 0.05) lipid oxidation, but storage time had a greater (p < 0.05) influence on purge loss, cook loss, and Warner-Bratzler shear force (WBSF). Current results suggest that the use of vacuum packaging for extended storage of beef steaks (>60) days is plausible.
Collapse
Affiliation(s)
- Gabriela M. Bernardez-Morales
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (G.M.B.-M.); (B.W.N.); (S.L.D.); (A.D.B.); (T.D.B.)
| | - Brooks W. Nichols
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (G.M.B.-M.); (B.W.N.); (S.L.D.); (A.D.B.); (T.D.B.)
| | - Savannah L. Douglas
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (G.M.B.-M.); (B.W.N.); (S.L.D.); (A.D.B.); (T.D.B.)
| | - Aeriel D. Belk
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (G.M.B.-M.); (B.W.N.); (S.L.D.); (A.D.B.); (T.D.B.)
| | - Terry D. Brandebourg
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (G.M.B.-M.); (B.W.N.); (S.L.D.); (A.D.B.); (T.D.B.)
| | - Tristan M. Reyes
- Winpak Ltd., 100 Saulteaux Crescent, Winnipeg, MB R3J 3T3, Canada;
| | - Jason T. Sawyer
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (G.M.B.-M.); (B.W.N.); (S.L.D.); (A.D.B.); (T.D.B.)
| |
Collapse
|
9
|
Aksu Mİ, Turan E, Gülbandılar A, Tamtürk F. Utilization of spray-dried raspberry powder as a natural additive to improve oxidative stability, microbial quality and overcome the perception of discoloration in vacuum-packed ground beef during chilled storage. Meat Sci 2023; 197:109072. [PMID: 36516591 DOI: 10.1016/j.meatsci.2022.109072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The present study was conducted to determine the effects of spray-dried raspberry powder (SDRP) (CONTROL, 1.0%, 2.0%, and 3.0%) as a natural antioxidant, antimicrobial, and colorant on physicochemical properties, lipid oxidation, discoloration, and microbial quality of vacuum-packed (VP) ground beef during chilled storage at 2 ± 0.5 °C for 18 days. By incorporating SDRP into VP ground beef pH, lipid oxidation (TBARS), lightness, and hue angle (h°) values decreased (P < .01), while redness (a*) and chroma (C*) values improved (P < .01). SDRP treatments had higher redness, more stable color, and lower pH and TBARS values during storage in a dose-dependent manner (P < .05), demonstrating that SDRP had a preventive effect on lipid oxidation and discoloration. The combination of vacuum packaging with SDRP generally resulted in lower bacterial growth during storage. These results demonstrated that 2% or 3% SDRP treatment has promising potential as an effective strategy to achieve oxidative and microbial stability and overcome discoloration in VP fresh meats.
Collapse
Affiliation(s)
- Muhammet İrfan Aksu
- Eskişehir Osmangazi University, Faculty of Agriculture, Department of Food Engineering, 26160 Eskişehir, Turkey.
| | - Emre Turan
- Ordu University, Faculty of Agriculture, Department of Food Engineering, 52200 Ordu, Turkey
| | - Aysel Gülbandılar
- Eskişehir Osmangazi University, Faculty of Agriculture, Department of Food Engineering, 26160 Eskişehir, Turkey
| | - Faruk Tamtürk
- DÖHLER Food and Beverage Ingredients R&D Center, Karaman 70100, Turkey
| |
Collapse
|
10
|
Nguyen CNM, Nirmal NP, Sultanbawa Y, Ziora ZM. Antioxidant and Antibacterial Activity of Four Tannins Isolated from Different Sources and Their Effect on the Shelf-Life Extension of Vacuum-Packed Minced Meat. Foods 2023; 12:foods12020354. [PMID: 36673446 PMCID: PMC9858154 DOI: 10.3390/foods12020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Four tannin samples extracted from chestnut wood (tannin oenologique, TO), grape (tannin VR grape, TVG), oak gall (tannin galalcool, TG), and oak tree (tannin VR supra elegance, TE) were evaluated for antioxidant and antibacterial activity. The highest total phenolic content (TPC) values were observed in the order of TVG > TG > TE > TO (p < 0.05). The antioxidant activities of all samples were determined in terms of DPPH radical scavenging activity, reducing power, metal-chelating activity, and linoleic acid peroxidation assay. The antioxidant activities of all samples vary and no correlation was observed with the respective TPC values of each sample. Antibacterial activities indicate that all samples showed more or less inhibitory effects against selected Gram-positive and Gram-negative bacteria. Based on antioxidant and antibacterial activity, TO and TVG were selected for the beef mince quality preservation study during refrigerated storage. Both TO and TVG at two different concentrations, 0.25 and 0.5%, could cease the chemical and microbial changes as compared to the control sample. Although total viable count (TVC) did not show a significant difference, the H2S-producing bacteria count was lower in all samples treated with TO and TVG compared to sodium metabisulfite (SMS) and the control sample (p < 0.05). Therefore, TO and TVG could be promising natural food preservatives during refrigerated storage.
Collapse
Affiliation(s)
- Chau Ngoc Minh Nguyen
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Health and Food Science Precinct, 39 Kessels Road, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Nilesh Prakash Nirmal
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Health and Food Science Precinct, 39 Kessels Road, Coopers Plains, Brisbane, QLD 4108, Australia
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
- Correspondence: ; Tel.: +66-28002380-295; Fax: +66-24419344
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Health and Food Science Precinct, 39 Kessels Road, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Conte A, Del Nobile MA. Introduction to the Special Issue: Advanced Strategies to Preserve Quality and Extend Shelf Life of Foods. Foods 2022; 11:foods11071052. [PMID: 35407139 PMCID: PMC8997502 DOI: 10.3390/foods11071052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/01/2023] Open
Abstract
We are pleased to present this Special Issue, which includes 13 papers that highlight the most important research activities in the field of food quality assurance and shelf-life extension [...]
Collapse
|