• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4699682)   Today's Articles (30)
For: Huang C, Gu Y. A Machine Learning Method for the Quantitative Detection of Adulterated Meat Using a MOS-Based E-Nose. Foods 2022;11:foods11040602. [PMID: 35206078 PMCID: PMC8870927 DOI: 10.3390/foods11040602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022]  Open
Number Cited by Other Article(s)
1
Yang X, Ho CT, Gao X, Chen N, Chen F, Zhu Y, Zhang X. Machine learning: An effective tool for monitoring and ensuring food safety, quality, and nutrition. Food Chem 2025;477:143391. [PMID: 40010186 DOI: 10.1016/j.foodchem.2025.143391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 02/05/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
2
Godini E, Zareiforoush H, Bakhshipour A, Lorigooini Z, Payman SH. Intelligent Grading of Green Cardamom Using Data Fusion of Electronic Nose and Computer Vision Methods. Food Sci Nutr 2025;13:e4645. [PMID: 40161408 PMCID: PMC11949847 DOI: 10.1002/fsn3.4645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/06/2024] [Accepted: 11/17/2024] [Indexed: 04/02/2025]  Open
3
Mazur F, Han Z, Tjandra AD, Chandrawati R. Digitalization of Colorimetric Sensor Technologies for Food Safety. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2404274. [PMID: 38932639 DOI: 10.1002/adma.202404274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024]
4
Mahanti NK, Shivashankar S, Chhetri KB, Kumar A, Rao BB, Aravind J, Swami D. Enhancing food authentication through E-nose and E-tongue technologies: Current trends and future directions. Trends Food Sci Technol 2024;150:104574. [DOI: 10.1016/j.tifs.2024.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
5
He HJ, da Silva Ferreira MV, Wu Q, Karami H, Kamruzzaman M. Portable and miniature sensors in supply chain for food authentication: a review. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 39066550 DOI: 10.1080/10408398.2024.2380837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
6
Zhai Z, Liu Y, Li C, Wang D, Wu H. Electronic Noses: From Gas-Sensitive Components and Practical Applications to Data Processing. SENSORS (BASEL, SWITZERLAND) 2024;24:4806. [PMID: 39123852 PMCID: PMC11314697 DOI: 10.3390/s24154806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 08/12/2024]
7
Sun H, Hua Z, Yin C, Li F, Shi Y. Geographical traceability of soybean: An electronic nose coupled with an effective deep learning method. Food Chem 2024;440:138207. [PMID: 38104451 DOI: 10.1016/j.foodchem.2023.138207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
8
Ma H, Guo J, Liu G, Xie D, Zhang B, Li X, Zhang Q, Cao Q, Li X, Ma F, Li Y, Wan G, Li Y, Wu D, Ma P, Guo M, Yin J. Raman spectroscopy coupled with chemometrics for identification of adulteration and fraud in muscle foods: a review. Crit Rev Food Sci Nutr 2024;65:2008-2030. [PMID: 38523442 DOI: 10.1080/10408398.2024.2329956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
9
Asadi M, Ghasemnezhad M, Bakhshipour A, Olfati JA, Mirjalili MH. Predicting the quality attributes related to geographical growing regions in red-fleshed kiwifruit by data fusion of electronic nose and computer vision systems. BMC PLANT BIOLOGY 2024;24:13. [PMID: 38163882 PMCID: PMC10759769 DOI: 10.1186/s12870-023-04661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
10
Wang S, Zhu R, Huang Z, Zheng M, Yao X, Jiang X. Synergetic application of thermal imaging and CCD imaging techniques to detect mutton adulteration based on data-level fusion and deep residual network. Meat Sci 2023;204:109281. [PMID: 37467680 DOI: 10.1016/j.meatsci.2023.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
11
Anwar H, Anwar T, Murtaza S. Review on food quality assessment using machine learning and electronic nose system. BIOSENSORS AND BIOELECTRONICS: X 2023;14:100365. [DOI: 10.1016/j.biosx.2023.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
12
Feyzioglu A, Taspinar YS. Beef Quality Classification with Reduced E-Nose Data Features According to Beef Cut Types. SENSORS (BASEL, SWITZERLAND) 2023;23:2222. [PMID: 36850817 PMCID: PMC9958759 DOI: 10.3390/s23042222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
13
The Impact of Wet Fermentation on Coffee Quality Traits and Volatile Compounds Using Digital Technologies. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
14
Khorramifar A, Sharabiani VR, Karami H, Kisalaei A, Lozano J, Rusinek R, Gancarz M. Investigating Changes in pH and Soluble Solids Content of Potato during the Storage by Electronic Nose and Vis/NIR Spectroscopy. Foods 2022;11:4077. [PMID: 36553819 PMCID: PMC9778509 DOI: 10.3390/foods11244077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]  Open
15
Monitoring Botrytis cinerea Infection in Kiwifruit Using Electronic Nose and Machine Learning Techniques. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
16
Nalazek-Rudnicka K, Kłosowska-Chomiczewska IE, Brockmeyer J, Wasik A, Macierzanka A. Relative quantification of pork and beef in meat products using global and species-specific peptide markers for the authentication of meat composition. Food Chem 2022;389:133066. [PMID: 35567862 DOI: 10.1016/j.foodchem.2022.133066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
17
Aznan A, Gonzalez Viejo C, Pang A, Fuentes S. Rapid Assessment of Rice Quality Traits Using Low-Cost Digital Technologies. Foods 2022;11:1181. [PMID: 35563907 PMCID: PMC9105373 DOI: 10.3390/foods11091181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA