1
|
Du C, Zhu G, Hu H, Duan Z, Luo S, Lin L, Lu J, Zheng Z. Influence of droplet size and surface hydrophobicity of soybean protein-based nanoemulsion fillers on the quality of silver carp myofibrillar protein gels. Food Chem X 2024; 24:101866. [PMID: 39974720 PMCID: PMC11838086 DOI: 10.1016/j.fochx.2024.101866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 02/21/2025] Open
Abstract
This study investigated the mechanisms underlying the influence of droplet size and emulsifier wettability on gel properties when oil-in-water (O/W) emulsions serve as fillers in myofibrillar protein (MP) gels. Pickering emulsions with varying droplet sizes were prepared using soybean protein isolate (SPI) and SPI-curcumin nanoparticles, then used to construct composite gels. Findings showed that decreased droplet size and increased emulsifier surface hydrophobicity enhanced hydrophobic interactions in the gel, increasing the β-sheet content of MP molecules. Upon the introduction of SPI-Cur-NPs stabilized nanoemulsion (SCNE), the hydrophobic force in the gel was approximately 2.6-fold more remarkable than that of the control, and the β-sheet content increased to 16.51 %. This resulted in a denser mesh framework and more uniform oil droplet distribution, increasing the hardness value from 26.993 g to 41.847 g. Moreover, SCNE addition improved gel antioxidant properties, reducing carbonyl and peroxide levels to 31.82 % and 24.15 % of the control, respectively. These findings offer insights for improving MP-based gel products.
Collapse
Affiliation(s)
- Chenxing Du
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Ge Zhu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Hanwen Hu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhangqun Duan
- Institute of Cereal & Oil Science and Technology, Academy of National Food and Strategic Reserves Administration, Beijing 102209, China
| | - Shuizhong Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Lin Lin
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Jianfeng Lu
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
2
|
Li B, Peng L, Cao Y, Liu S, Zhu Y, Dou J, Yang Z, Zhou C. Insights into Cold Plasma Treatment on the Cereal and Legume Proteins Modification: Principle, Mechanism, and Application. Foods 2024; 13:1522. [PMID: 38790822 PMCID: PMC11120358 DOI: 10.3390/foods13101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cereal and legume proteins, pivotal for human health, significantly influence the quality and stability of processed foods. Despite their importance, the inherent limited functional properties of these natural proteins constrain their utility across various sectors, including the food, packaging, and pharmaceutical industries. Enhancing functional attributes of cereal and legume proteins through scientific and technological interventions is essential to broadening their application. Cold plasma (CP) technology, characterized by its non-toxic, non-thermal nature, presents numerous benefits such as low operational temperatures, lack of external chemical reagents, and cost-effectiveness. It holds the promise of improving proteins' functionality while maximally retaining their nutritional content. This review delves into the pros and cons of different cold plasma generation techniques, elucidates the underlying mechanisms of protein modification via CP, and thoroughly examines research on the application of cold plasma in augmenting the functional properties of proteins. The aim is to furnish theoretical foundations for leveraging CP technology in the modification of cereal and legume proteins, thereby enhancing their practical applicability in diverse industries.
Collapse
Affiliation(s)
- Bin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Yanan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yuchen Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianguo Dou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenguang Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Kim YJ, Shin DM, Chun YG, Choi YS, Kim BK. Development of meat spread with omega-3 fatty acids derived from flaxseed oil for the elderly: Physicochemical, textural, and rheological properties. Meat Sci 2023; 204:109254. [PMID: 37354834 DOI: 10.1016/j.meatsci.2023.109254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
This study evaluates the characteristics of n-3-enriched meat spread that is in development for consumption by elderly individuals. Herein, flaxseed oil was used as a source of n-3 fatty acid, and macro- and nano-sized flaxseed oil emulsions (FOE) were prepared for the fabrication of meat spreads. As the level of FOE was increased in the meat spreads, significant increases in the levels of omega-3 fatty acids (α-linolenic acid) were observed. Emulsion stability and cooking loss were also improved in meat spreads formulated with FOE compared with those the control. In particular, the addition of FOE generated softer and less chewy meat, owing to its lower melting point and rheological properties. However, the high content of unsaturated fatty acids in the FOE-containing meat spreads increased their susceptibility to lipid oxidation meat. These findings indicate that FOE, particularly macro-sized FOE, has the potential for use in n-3 fatty acid enriched meat products that are intended for consumption by elderly individuals but need to be evaluated for their impacts on shelf-life and sensory quality.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dong-Min Shin
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
4
|
Effects of pre-emulsified safflower oil with magnetic field modified soy 11S globulin on the gel, rheological, and sensory properties of reduced-animal fat pork batter. Meat Sci 2023; 198:109087. [PMID: 36628894 DOI: 10.1016/j.meatsci.2022.109087] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In this work, the differences in macrostructure and microstructure, rheology, and storage stability of pre-emulsified safflower oil (PSO) prepared by natural and magnetic field modified soy 11S globulin were analysised. It was concluded that the PSO with magnetic field modified soy 11S globulin (MPSO) has better emulsifying activity and physical stability. The changes in gel quality, oxidational sensitivity, rheological, and sensory properties of pork batters with different substitute ratios (0%, 25%, 50%, 75%, and 100%) of pork back-fat by MPSO with magnetic field modified soy 11S globulin were studied. Compared to the sample without MPSO, pork batter with MPSO showed higher emulsion stability, apparent viscosity, L⁎ value, springiness, cohesiveness, and expressible moisture, while lower a⁎ value and cooking loss. Moreover, added MPSO could be more uniformly distributed into the meat matrix with smaller holes. With the increase in the replacement proportion of pork back-fat, the hardness, water- and fat-holding capacity, and P21 of pork batter significantly decreased (P < 0.05). As revealed by sensory evaluation and TBARS, using MPSO to substitute for pork back-fat decreased the lipid oxidational sensitivity of pork batter, and without negative effects on the appearance, juiciness and overall acceptability. Overall, it is feasible to apply MPSO as a pork-fat replacer to produce reduced-animal fat pork batter with excellent gel and sensory properties.
Collapse
|
5
|
Zhu S, Zhu H, Xu S, Lv S, Liu S, Ding Y, Zhou X. Gel-type emulsified muscle products: Mechanisms, affecting factors, and applications. Compr Rev Food Sci Food Saf 2022; 21:5225-5242. [PMID: 36301621 DOI: 10.1111/1541-4337.13063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 01/28/2023]
Abstract
The gel-type emulsified muscle products improve fatty acid composition, maintain the oxidative stability, and achieve a better sensory acceptability. This review emphasizes the stabilization mechanisms of these emulsified muscle products. In particular, factors associated with the stability of the emulsified muscle systems are outlined, including the processing conditions (pH and heating), lipids, and emulsifiers. Besides, some novel systems are further introduced, including the Pickering emulsions and organogels, due to their great potential in stabilizing emulsified gels. Moreover, the promising prospects of emulsion muscle products such as improved gel properties, oxidative stability, freeze-thaw stability, fat replacement, and nutraceutical encapsulation were elaborated. This review comprehensively illustrates the considerations on developing gel-type emulsified products and provides inspiration for the rational design of emulsified muscle formulations with both oxidatively stable and organoleptically acceptable performance.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Hao Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Siyao Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Shuangbao Lv
- Zhejiang NF Refrigerated Food Co. Ltd, Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, China.,National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| |
Collapse
|
6
|
Effects of Tea Polyphenol Palmitate Existing in the Oil Phase on the Stability of Myofibrillar Protein O/W Emulsion. Foods 2022; 11:foods11091326. [PMID: 35564049 PMCID: PMC9104160 DOI: 10.3390/foods11091326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/23/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to explore the effect of adding different concentrations (0, 0.01%, 0.03%, and 0.05% (w/w)) of tea polyphenol palmitate (TPP) in the oil phase on the emulsifying properties of 5 and 10 mg/mL myofibrillar protein (MP). Particle size results revealed that the flocculation of droplets increased as TPP concentration increased and that droplets in 5 mg/mL MP emulsions (25−34 μm) were larger than in 10 mg/mL MP emulsions (14−22 μm). The emulsifying activity index of 5 mg/mL MP emulsions decreased with increasing TPP concentration. The micrographs showed that the droplets of MP emulsions exhibited extensive flocculation at TPP concentrations >0.03%. Compared with 5 mg/mL MP emulsions, 10 mg/mL MP emulsions showed better physical stability and reduced flocculation degree, which coincided with lower delta backscattering intensity (ΔBS) and Turbiscan stability index values. The flow properties of emulsions can be successfully depicted by Ostwald−de Waele models (R2 > 0.99). The concentrations of TPP and protein affect the K values of emulsions (p < 0.05). Altogether, increased protein concentration in the continuous phase could improve emulsion stability by increasing viscosity, offsetting the adverse effects of TPP to a certain extent. This study is expected to promote the rational application of TPP in protein emulsion products of high quality and acceptability.
Collapse
|