1
|
Li XA, Liu J, Zhang B, Wang J, Kong B, Ren J, Chen Q. Inoculation with autochthonous yeast strains in Harbin dry sausages with partial substitution of NaCl by KCl: Bacterial community structure and flavour profiles. Food Microbiol 2025; 128:104739. [PMID: 39952756 DOI: 10.1016/j.fm.2025.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/09/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
The effects of two autochthonous yeast strains (Pichia kudriavzevii and Debaryomyces hansenii) on the physicochemical characteristics, bacterial community structure, and flavour profile of the dry sausages with 40% substitution of NaCl by KCl were evaluated in this study. The results revealed that the inoculation of yeast strains increased the pH and yeast counts of low-sodium sausages. Higher contents of total esters, aldehydes, and ketones were detected in the inoculated sausages (P < 0.05). Based on the results of high-throughput sequencing, the inoculation of P. kudriavzevii decreased the abundance of Lactobacillus, Weissella, and Leuconostoc. However, the inoculation of D. hansenii increased the abundance of Lactobacillus, Weissella and Staphylococcus, which may help to inhibit the growth of pathogenic microorganisms in sausages. Electronic tongue analysis as well as sensory evaluation revealed that D. hansenii reduced bitter, astringent, and metallic tastes (P < 0.05). Overall, D. hansenii can be used as the prospective stater culture to compensate the flavour defects and improve the safety of the dry sausage with NaCl substitutes.
Collapse
Affiliation(s)
- Xiang-Ao Li
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Biying Zhang
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jiawang Wang
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jing Ren
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
2
|
Sui Y, Liu J, Lu J, Gao Y, Badar IH, Li XA, Chen Q, Kong B, Qin L. Coinoculation of autochthonous starter cultures: A strategy to improve the flavor characteristics and inhibit biogenic amines of Harbin dry sausage. Food Chem X 2024; 23:101655. [PMID: 39157655 PMCID: PMC11327478 DOI: 10.1016/j.fochx.2024.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/26/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
The effects of separately coinoculating Lactiplantibacillus plantarum S8 (LP) with Staphylococcus carnosus L8 (LP + SC), Pichia kudriavzevii M6 (LP + PK), and S. carnosus L8 and P. kudriavzevii M6 (LP + SC + PK) on the flavor characteristics and biogenic amines (BAs) production in Harbin dry sausages were investigated. The coinoculated sausages exhibited higher free amino acids (FAAs) content than the noninoculated and LP sausages. Moreover, inoculated dry sausages exhibited lower BA contents (174.45, 239.43, 190.24, and 206.7 mg/kg for the LP, LP + SC, LP + PK, and LP + PK + SC sausages, respectively) than the noninoculated sausage (339.73 mg/kg). Meanwhile, the LP + PK and LP + SC + PK sausages had the highest contents of esters (996.70 μg/kg) and alcohols (603.46 μg/kg), respectively. A sensory evaluation demonstrated that the LP + SC + PK sausage had the highest fermented odor and the lowest fatty odor. Pearson correlation analysis revealed that FAAs were correlated with most key volatile compounds and BAs. This study provides new insights into flavor development and BA inhibition in dry sausages through coinoculation.
Collapse
Affiliation(s)
- Yumeng Sui
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiasheng Lu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuan Gao
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | | | - Xiang-ao Li
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
3
|
Sidari R, Tofalo R. Dual Role of Yeasts and Filamentous Fungi in Fermented Sausages. Foods 2024; 13:2547. [PMID: 39200474 PMCID: PMC11354145 DOI: 10.3390/foods13162547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
This contribution aims to review the presence and the potential double role-positive or beneficial and negative or harmful-of fungi in fermented sausages as well as their use as starter cultures. Traditionally, studies have been focused on lactic acid bacteria; however, over the years, interest in the study of fungi has increased. The important contribution of yeasts and filamentous fungi to the quality and safety of fermented sausages has emerged from reviewing the literature regarding these fermented products. In conclusion, this review contributes to the existing literature by considering the double role of filamentous fungi and yeasts, the global fermented sausage market size, the role and use of starters, and the starters mainly present in the worldwide market, as well as the main factors to take into account to optimize production. Finally, some suggestions for future broadening of the sector are discussed.
Collapse
Affiliation(s)
- Rossana Sidari
- Department of Agraria, Mediterranea University of Reggio Calabria, 89122 Reggio Calabria, Italy
| | - Rosanna Tofalo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
4
|
Gong X, Chen X, Mi R, Qi B, Xiong S, Li J, Zhu Q, Wang S. Two Debaryomyces hansenii strains as starter cultures for improving the nutritional and sensory quality of dry-cured pork belly. Food Res Int 2024; 183:114227. [PMID: 38760146 DOI: 10.1016/j.foodres.2024.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
Dry-cured meat products are gaining attention owing to their distinctive sensory characteristics and health benefits. In this study, two Debaryomyces hansenii strains were investigated for their potential as starter cultures for dry-cured pork belly products. After preliminary screening, these D. hansenii strains, namely, S20 and S26, both exhibiting with excellent aroma-producing capacity in a dry-cured meat model, were selected as single-strain starter cultures. For comparison, a non-inoculated control was also evaluated. In S20- and S26-inoculated pork belly, yeast dominated the microbiota and improved microbiological safety by suppressing Enterobacteriaceae growth. Compared with the non-inoculated control, the inoculated pork belly yielded higher hardness and redness (a*) values. Starter culture inoculation accelerated proteolysis in pork belly, improving the content of total free amino acids (TFFAs) and several essential free amino acids (Thr, Val, Met, Ile, Leu, and Phe) at the end of processing. Moreover, the inoculated samples exhibited higher levels of fat oxidation-derived aldehydes as well as esters, acids, alcohols and other compounds than the non-inoculated control at the end of the 95-day ripening period. Overall, these findings provide new insights into the application of D. hansenii isolated from dry-cured ham to dry-cured pork belly.
Collapse
Affiliation(s)
- Xiaohui Gong
- China Meat Research Center, Beijing 100068, China; School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550025, China; Guizhou Provincial Light Industry Scientific Research Institute, Guiyang 550014, China
| | - Xi Chen
- China Meat Research Center, Beijing 100068, China
| | - Ruifang Mi
- China Meat Research Center, Beijing 100068, China
| | - Biao Qi
- China Meat Research Center, Beijing 100068, China
| | - Suyue Xiong
- China Meat Research Center, Beijing 100068, China
| | - Jiapeng Li
- China Meat Research Center, Beijing 100068, China
| | - Qiujin Zhu
- School of Liquor & Food Engineering, Guizhou University/Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang 550025, China.
| | - Shouwei Wang
- China Meat Research Center, Beijing 100068, China.
| |
Collapse
|
5
|
Sui Y, Li X, Gao Y, Kong B, Jiang Y, Chen Q. Effect of Yeast Inoculation on the Bacterial Community Structure in Reduced-Salt Harbin Dry Sausages: A Perspective of Fungi-Bacteria Interactions. Foods 2024; 13:307. [PMID: 38254608 PMCID: PMC10815184 DOI: 10.3390/foods13020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Yeast strains are promising starters to compensate for the flavor deficiencies of reduced-salt dry sausages, but their influence on the bacterial community's structure has not yet been clarified. In this study, the effect of separately inoculating Pichia kudriavzevii MDJ1 (Pk) and Debaryomyces hansenii HRB3 (Dh) on the bacterial community structure in reduced-salt dry sausage was investigated. The results demonstrated that the inoculation of two yeast strains significantly reduced the pH, and enhanced the total acid content, lactic acid bacteria (LAB) counts, and total bacterial counts of reduced-salt sausages after a 12-day fermentation (p < 0.05). Furthermore, high-throughput sequencing results elucidated that the inoculation of yeast strains significantly affected the bacterial composition of the dry sausages. Especially, the relative abundance of bacteria at the firmicute level in the Pk and Dh treatments exhibited a significant increase of 83.22% and 82.19%, respectively, compared to the noninoculated reduced-salt dry sausage treatment (Cr). The relative abundance of Latilactobacillus, especially L. sakei (0.46%, 2.80%, 65.88%, and 33.41% for the traditional dry sausage (Ct), Cr, Pk, and Dh treatments, respectively), increased significantly in the reduced-salt sausages inoculated with two yeast strains. Our work demonstrates the dynamic changes in the bacterial composition of reduced-salt sausages inoculated with different yeast strains, which could provide the foundation for the in-depth study of fungi-bacteria interactions in fermented foods.
Collapse
Affiliation(s)
- Yumeng Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.S.); (X.L.); (Y.G.); (B.K.)
| | - Xiangao Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.S.); (X.L.); (Y.G.); (B.K.)
| | - Yuan Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.S.); (X.L.); (Y.G.); (B.K.)
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.S.); (X.L.); (Y.G.); (B.K.)
| | - Yitong Jiang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.S.); (X.L.); (Y.G.); (B.K.)
| |
Collapse
|
6
|
Wang H, Chen Q, Kong B. Insight into the Quality Development and Microbial Dynamics of Meat and Meat Products. Foods 2023; 12:foods12091782. [PMID: 37174320 PMCID: PMC10178197 DOI: 10.3390/foods12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Meat and meat products play a vital role in the daily diet due to their desirable texture, delicious flavor and nutritional value [...].
Collapse
Affiliation(s)
- Huiping Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Hu Y, Zhang L, Badar IH, Liu Q, Liu H, Chen Q, Kong B. Insights into the flavor perception and enhancement of sodium-reduced fermented foods: A review. Crit Rev Food Sci Nutr 2022; 64:2248-2262. [PMID: 36095069 DOI: 10.1080/10408398.2022.2121909] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Salt (sodium chloride, NaCl) is a vital ingredient in fermented foods, which affects their safety, texture, and flavor characteristics. Recently, the demand for reduced-sodium fermented foods has increased, as consumers have become more health-conscious. However, reducing sodium content in fermented foods may negatively affect flavor perception, which is a critical quality attribute of fermented foods for both the food industry and consumers. This review summarizes the role of salt in the human body and foods and its role in the flavor perception of fermented foods. Current sodium reduction strategies used in the food industry mainly include the direct stealth reduction of NaCl, substituting NaCl with other chloride salts, and structure modification of NaCl. The odor-induced saltiness enhancement, application of starter cultures, flavor enhancers, and non-thermal processing technology are potential strategies for flavor compensation of sodium-reduced fermented foods. However, reducing sodium in fermented food is challenging due to its specific role in flavor perception (e.g., promoting saltiness and volatile compound release from food matrices, inhibiting bitterness, and changing microflora structure). Therefore, multiple challenges must be addressed in order to improve the flavor of low-sodium fermented foods. Future studies should thus focus on the combination of several strategies to compensate for the deficiencies in flavor resulting from sodium reduction.
Collapse
Affiliation(s)
- Yingying Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|