1
|
Zou Z, Purnawan MA, Wang Y, Ismail BB, Zhang X, Yang Z, Guo M. A novel antimicrobial peptide WBp-1 from wheat bran: Purification, characterization and antibacterial potential against Listeria monocytogenes. Food Chem 2025; 463:141261. [PMID: 39321596 DOI: 10.1016/j.foodchem.2024.141261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
This study introduces a novel antimicrobial peptide (AMP), WBp-1, isolated from wheat bran and purified via reversed-phase high-performance liquid chromatography. The amino acid sequence, determined as IITGASSGIGKAIAKHFI by LC-MS/MS, was composed predominantly of alkaline and hydrophobic residues. WBp-1 was predicted to be a stable, hydrophobic, cationic peptide with an α-helical structure. Moreover, it displayed significant antibacterial efficacy against Listeria monocytogenes, with a minimum inhibitory concentration of 150 μg/mL. Further mechanistic studies suggest that WBp-1 exerts its bactericidal activity by disrupting cell membrane integrity, impeding peptidoglycan synthesis by binding to penicillin-binding protein 4 via hydrogen bonding, increasing cell permeability, altering membrane potential and fluidity, and altering surface hydrophobicity. Interestingly, WBp-1 showed minimal hemolytic activity and cytotoxicity against LO2 cells, even at 16× MIC. These findings highlight the strong potential of WBp-1 as a novel antibacterial agent and food preservative against Listeria monocytogenes.
Collapse
Affiliation(s)
- Zhipeng Zou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Michelle A Purnawan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Yiming Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
2
|
Zhu Z, Chu T, Niu C, Yuan H, Zhang L, Song Y. Astral-DIA proteomics: Identification of differential proteins in sheep, goat, and cow milk. Int J Biol Macromol 2024; 283:137866. [PMID: 39571851 DOI: 10.1016/j.ijbiomac.2024.137866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Dairy products are of great benefit to human health, and the nutritional differences between different dairy products have attracted attention. In this study, DIA proteomics technique, combined with parallel reaction monitoring (PRM) as a validation method, was used for the qualitative and quantitative analysis of proteins in sheep, goat, and cow milk. In total, 4316 proteins were identified. Beta-2-glycoprotein 1 and aminopeptidase can be used as potential biomarkers for sheep milk, fibrinogen alpha chain and Alpha-1-B glycoprotein can be used as potential biomarkers for goat milk, and angiogenin-1 and Serpin family G member 1 can be used as potential biomarkers for cow milk. Functional analysis showed that these different proteins were enriched through different pathways, such as complement and coagulation cascades. These data reveal the differences in protein content and physiological functionality and provide an important basis for the study of dairy nutrition and adulteration identification.
Collapse
Affiliation(s)
- Zhongshi Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Tingting Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chen Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hao Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Wang Z, Xu J, Zeng X, Du Q, Lan H, Zhang J, Pan D, Tu M. Recent Advances on Antimicrobial Peptides from Milk: Molecular Properties, Mechanisms, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:80-93. [PMID: 38152984 DOI: 10.1021/acs.jafc.3c07217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Traditional antibiotics are facing a tremendous challenge due to increased antimicrobial resistance; hence, there is an urgent need to find novel antibiotic alternatives. Milk protein-derived antimicrobial peptides (AMPs) are currently attracting substantial attention considering that they showcase an extensive spectrum of antimicrobial activities, with slower development of antimicrobial resistance and safety of raw materials. This review summarizes the molecular properties, and activity mechanisms and highlights the applications and limitations of AMPs derived from milk proteins comprehensively. Also the analytical technologies, especially bioinformatics methodologies, applied in the process of screening, identification, and mechanism illustration of AMPs were underlined. This review will give some ideas for further research and broadening of the applications of milk protein-derived AMPs in the food field.
Collapse
Affiliation(s)
- Zhicheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hangzhen Lan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jianming Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310016, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
4
|
Li Y, Tang X, Yang Z, He J, Ma N, Huang A, Shi Y. BCp12/PLA combination: A novel antibacterial agent targeting Mur family, DNA gyrase and DHFR. Int J Food Microbiol 2023; 406:110370. [PMID: 37678070 DOI: 10.1016/j.ijfoodmicro.2023.110370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
The combination of natural antimicrobial peptide BCp12/phenyllatic acid (BCp12/PLA) presents a more efficient antibacterial effect, but its antibacterial mechanism remains unclear. This study studied the synergistic antibacterial mechanism of BCp12 and PLA against S. aureus. The results demonstrated that the BCp12/PLA combination presented a synergistic antibacterial effect against S. aureus, with a fractional inhibitory concentration of 0.05. Furthermore, flow cytometry and scanning electron microscope analysis revealed that BCp12 and PLA synergistically promoted cell membrane disruption compared with the group treated only with one compound, inducing structural cell damage and cytoplasmic leakage. In addition, fluorescence spectroscopy analysis suggested that BCp12 and PLA synergistically influenced genomic DNA. BCp12 and PLA targeted enzymes related to peptidoglycan and DNA synthesis and interacted by hydrogen bonding and hydrophobic interactions with mur enzymes (murC, murD, murE, murF, and murG), dihydrofolate reductase, and DNA gyrase. Additionally, the combined treatment successfully inhibited microbial reproduction in the storage of pasteurized milk, indicating that the combination of BCp12 and PLA can be used as a new preservative strategy in food systems. Overall, this study could provide potential strategies for preventing and controlling foodborne pathogens.
Collapse
Affiliation(s)
- Yufang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiaozhao Tang
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Zushun Yang
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Jinze He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Ni Ma
- Yunnan Center for Disease Control and Prevention, Kunming 650022, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
5
|
A novel milk-derived peptide effectively inhibits Staphylococcus aureus: Interferes with cell wall synthesis, peptidoglycan biosynthesis disruption reaction mechanism, and its application in real milk system. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|