1
|
Yang LC, Lee YT, Kumaran A, Huang SQ, Su CH, Wu DR, Yen TH, Chiu CH. Target and non-target analysis with molecular network strategies for identifying potential index compounds from Momordica charantia L. for alleviating non-alcoholic fatty liver. INDUSTRIAL CROPS AND PRODUCTS 2024; 219:119014. [DOI: 10.1016/j.indcrop.2024.119014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
|
2
|
Bora AFM, Kouame KJEP, Li X, Liu L, Pan Y. New insights into the bioactive polysaccharides, proteins, and triterpenoids isolated from bitter melon (Momordica charantia) and their relevance for nutraceutical and food application: A review. Int J Biol Macromol 2023; 231:123173. [PMID: 36642359 DOI: 10.1016/j.ijbiomac.2023.123173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The recent trend in infectious diseases and chronic disorders has dramatically increased consumers' interest in functional foods. As a result, the research of bioactive ingredients with potential for nutraceutical and food application has rapidly become a topic of interest. In this optic, the plant Momordica charantia (M. charantia) has recently attracted the most attention owing to its numerous biological properties including anti-diabetic, anti-obesity, anti-inflammatory, anti-cancers among others. However, the current literature on M. charantia has mainly been concerned with the plant extract while little is known on the specific bioactive compounds responsible for the plant's health benefits. Hence, the present review aims to provide a comprehensive overview of the recent research progress on bioactives isolated from M. charantia, focusing on polysaccharides, proteins, and triterpenoids. Thus, this review provides an up-to-date account of the different extraction methods used to isolate M. charantia bioactives. In addition, the structural features and biological properties are presented. Moreover, this review discusses the current and promising applications of M. charantia bioactives with relevance to the nutraceutical and food industries. The information provided in this review will serve as a theoretical basis and practical support for the formulation of products enriched with M. charantia bioactives.
Collapse
Affiliation(s)
- Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| | - Yue Pan
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
3
|
Li H, Qiu Y, Xie M, Ouyang C, Ding X, Zhang H, Dong W, Xiong Y, Tang X. Momordicine I alleviates isoproterenol-induced cardiomyocyte hypertrophy through suppression of PLA2G6 and DGK-ζ. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2023; 27:75-84. [PMID: 36575935 PMCID: PMC9806645 DOI: 10.4196/kjpp.2023.27.1.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022]
Abstract
This study aimed to observe the protective effect of momordicine I, a triterpenoid compound extracted from momordica charantia L., on isoproterenol (ISO)-induced hypertrophy in rat H9c2 cardiomyocytes and investigate its potential mechanism. Treatment with 10 μM ISO induced cardiomyocyte hypertrophy as evidenced by increased cell surface area and protein content as well as pronounced upregulation of fetal genes including atrial natriuretic peptide, β-myosin heavy chain, and α-skeletal actin; however, those responses were markedly attenuated by treatment with 12.5 μg/ml momordicine I. Transcriptome experiment results showed that there were 381 and 447 differentially expressed genes expressed in comparisons of model/control and momordicine I intervention/model, respectively. GO enrichment analysis suggested that the anti-cardiomyocyte hypertrophic effect of momordicine I may be mainly associated with the regulation of metabolic processes. Based on our transcriptome experiment results as well as literature reports, we selected glycerophospholipid metabolizing enzymes group VI phospholipase A2 (PLA2G6) and diacylglycerol kinase ζ (DGK-ζ) as targets to further explore the potential mechanism through which momordicine I inhibited ISO-induced cardiomyocyte hypertrophy. Our results demonstrated that momordicine I inhibited ISO-induced upregulations of mRNA levels and protein expressions of PLA2G6 and DGK-ζ. Collectively, momordicine I alleviated ISO-induced cardiomyocyte hypertrophy, which may be related to its inhibition of the expression of glycerophospholipid metabolizing enzymes PLA2G6 and DGK-ζ.
Collapse
Affiliation(s)
- Hongming Li
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yumei Qiu
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Mengdie Xie
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Changsheng Ouyang
- Department of Cardiology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Xiaoyun Ding
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Hao Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wei Dong
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yinhua Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China,Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang 330013, China
| | - Xilan Tang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China,Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang 330013, China,Correspondence Xilan Tang, E-mail:
| |
Collapse
|