1
|
Franzolin AML, Fioretto MN, Ribeiro IT, Maciel FA, Barata LA, Vitali PM, Magosso N, Fagundes FL, Emílio-Silva MT, Hiruma Lima CA, Scarano WR, Justulin LA. Maternal protein restriction compromises hepatic phenotype and antioxidant defense in postweaning male rats, while females exhibit resilience. Biochem Biophys Res Commun 2025; 766:151873. [PMID: 40300334 DOI: 10.1016/j.bbrc.2025.151873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/01/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept postulates that maternal malnutrition can program offspring for dysfunction of multiple systems, including the liver. Maternal Protein Restriction (MPR) is a maternal malnutrition model that dysregulates catabolic hormones early in life, with long-term consequences on offspring such as hypertension and reproductive system cancers. Furthermore, studies evaluating sex-specific differences are scarce, especially considering the consequences of MPR on early life. Here, we investigated the impacts of MPR on hepatic phenotypic and molecular aspects of male and female rats at postnatal day (PND)21. The rats were divided into two groups: CTR, from dams that consumed a normal-protein diet (17 % protein), or GLLP, from dams that consumed a low-protein diet (6 % protein) throughout gestation and lactation. Our results demonstrated that MPR leads to an increase in collagen fibers, glycogen, and peroxiredoxin 1, in addition to a decrease in reticular fibers, mast cells, GSH, and MDA in the liver of male rats. In females, a reduction of reticular fibers and protein expression of hepatic peroxiredoxin 4 was observed. By contrasting these results with in silico analyses, we suggest that the main altered mechanisms in males are associated with oxidative stress, glycogen metabolism, and inflammatory responses. In females, a subtle dysregulation of antioxidant activity within the extracellular matrix was noted. Therefore, this work demonstrates sex-specific hepatic differences in post-weaning rats exposed to MPR, highlighting possible maternal modulations that lead males to be more affected, which may generate long-term effects on hepatic and systemic health.
Collapse
Affiliation(s)
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Isabelle Tenori Ribeiro
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Flávia Alessandra Maciel
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Luisa Annibal Barata
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Pedro Menchini Vitali
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Natália Magosso
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Felipe Leonardo Fagundes
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Maycon Tavares Emílio-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Clélia Akiko Hiruma Lima
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
2
|
Sharma S, Bhonde R. Dilemma of Epigenetic Changes Causing or Reducing Metabolic Disorders in Offsprings of Obese Mothers. Horm Metab Res 2023; 55:665-676. [PMID: 37813098 DOI: 10.1055/a-2159-9128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Maternal obesity is associated with fetal complications predisposing later to the development of metabolic syndrome during childhood and adult stages. High-fat diet seems to influence individuals and their subsequent generations in mediating weight gain, insulin resistance, obesity, high cholesterol, diabetes, and cardiovascular disorder. Research evidence strongly suggests that epigenetic alteration is the major contributor to the development of metabolic syndrome through DNA methylation, histone modifications, and microRNA expression. In this review, we have discussed the outcome of recent studies on the adverse and beneficial effects of nutrients and vitamins through epigenetics during pregnancy. We have further discussed about the miRNAs altered during maternal obesity. Identification of new epigenetic modifiers such as mesenchymal stem cells condition media (MSCs-CM)/exosomes for accelerating the reversal of epigenetic abnormalities for the development of new treatments is yet another aspect of the present review.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ramesh Bhonde
- Stem Cells and Regenerative Medicine, Dr. D. Y. Patil Vidyapeeth Pune (Deemed University), Pune, India
| |
Collapse
|
3
|
Ma S, Hasegawa E, Nakai Y, Jia H, Kato H. Transcriptome and Methylome Profiling in Rat Skeletal Muscle: Impact of Post-Weaning Protein Restriction. Int J Mol Sci 2022; 23:ijms232415771. [PMID: 36555412 PMCID: PMC9779051 DOI: 10.3390/ijms232415771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle is programmable, and early-life nutritional stimuli may form epigenetic memory in the skeletal muscle, thus impacting adult muscle function, aging, and longevity. In the present study, we designed a one-month protein restriction model using post-weaning rats, followed by a two-month rebound feeding, to investigate how early-life protein restriction affects overall body growth and muscle development and whether these influences could be corrected by rebound feeding. We observed comprehensive alterations immediately after protein restriction, including retarded growth, altered biochemical indices, and disturbed hormone secretion. Transcriptome profiling of the gastrocnemius muscle followed by gene ontology analyses revealed that "myogenic differentiation functions" were upregulated, while "protein catabolism" was downregulated as a compensatory mechanism, with enhanced endoplasmic reticulum stress and undesired apoptosis. Furthermore, methylome profiling of the gastrocnemius muscle showed that protein restriction altered the methylation of apoptotic and hormone secretion-related genes. Although most of the alterations were reversed after rebound feeding, 17 genes, most of which play roles during muscle development, remained altered at the transcriptional level. In summary, early-life protein restriction may undermine muscle function in the long term and affect skeletal muscle development at the both transcriptional and methylation levels, which may hazard future muscle health.
Collapse
Affiliation(s)
- Sihui Ma
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan
| | - Emi Hasegawa
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan
| | - Yuji Nakai
- Institute of Regional Innovation, Hirosaki University, 2-2-1 Yanagawa, Aomori-shi 0380012, Japan
| | - Huijuan Jia
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan
- Correspondence: (H.J.); (H.K.)
| | - Hisanori Kato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 1138657, Japan
- Correspondence: (H.J.); (H.K.)
| |
Collapse
|
4
|
Santos SAA, Portela LMF, Camargo ACL, Constantino FB, Colombelli KT, Fioretto MN, Mattos R, de Almeida Fantinatti BE, Denti MA, Piazza S, Felisbino SL, Zambrano E, Justulin LA. miR-18a-5p Is Involved in the Developmental Origin of Prostate Cancer in Maternally Malnourished Offspring Rats: A DOHaD Approach. Int J Mol Sci 2022; 23:14855. [PMID: 36499183 PMCID: PMC9739077 DOI: 10.3390/ijms232314855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept correlates early life exposure to stressor conditions with the increased incidence of non-communicable chronic diseases, including prostate cancer (PCa), throughout the life span. However, the molecular mechanisms involved in this process remain poorly understood. In this study, the deregulation of two miRNAs (rno-miR-18a-5p and rno-miR-345-3p) was described in the ventral prostate VP of old rats born to dams fed with a low protein diet (LPD) (6% protein in the diet) during gestational and lactational periods. Integrative analysis of the (VP) transcriptomic and proteomic data revealed changes in the expression profile of 14 identified predicted targets of these two DE miRNAs, which enriched terms related to post-translational protein modification, metabolism of proteins, protein processing in endoplasmic reticulum, phosphonate and phosphinate metabolism, the calnexin/calreticulin cycle, metabolic pathways, N-glycan trimming in the ER and the calnexin/calreticulin cycle, hedgehog ligand biogenesis, the ER-phagosome pathway, detoxification of reactive oxygen species, antigenprocessing-cross presentation, RAB geranylgeranylation, collagen formation, glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, and platinum drug resistance. RT-qPCR validated the deregulation of the miR-18a-5p/P4HB (prolyl 4-hydroxylase subunit beta) network in the VP of older offspring as well as in the PNT-2 cells transfected with mimic miR-18a-5p. Functional in vitro studies revealed a potential modulation of estrogen receptor α (ESR1) by miR-18a-5p in PNT-2 cells, which was also confirmed in the VP of older offspring. An imbalance of the testosterone/estrogen ratio was also observed in the offspring rats born to dams fed with an LPD. In conclusion, deregulation of the miR-18a-5p/P4HB network can contribute to the developmental origins of prostate cancer in maternally malnourished offspring, highlighting the need for improving maternal healthcare during critical windows of vulnerability early in life.
Collapse
Affiliation(s)
- Sergio Alexandre Alcantara Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Flavia Bessi Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ketlin Thassiani Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Bruno Evaristo de Almeida Fantinatti
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Michela Alessandra Denti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Sérgio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| |
Collapse
|