1
|
Wang W, Sun B, Deng J, Ai N. Addressing flavor challenges in reduced-fat dairy products: A review from the perspective of flavor compounds and their improvement strategies. Food Res Int 2024; 188:114478. [PMID: 38823867 DOI: 10.1016/j.foodres.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
In recent years, the demand for reduced-fat dairy products (RFDPs) has increased rapidly as the health risks associated with high-fat diets have become increasingly apparent. Unfortunately, lowering the fat content in dairy products would reduce the flavor perception of fat. Fat-derived flavor compounds are the main contributor to appealing flavor among dairy products. However, the contribution of fat-derived flavor compounds remains underappreciated among the flavor improvement factors of RFDPs. Therefore, this review aims to summarize the flavor perception mechanism of fat and the profile of fat-derived flavor compounds in dairy products. Furthermore, the characteristics and influencing factors of flavor compound release are discussed. Based on the role of these flavor compounds, this review analyzed the current and potential flavor improvement strategies for RFDPs, including physical processing, lipolysis, microbial applications, and fat replacement. Overall, promoting the synthesis of milk fat characteristic flavor compounds in RFDPs and aligning the release properties of flavor compounds from the RFDPs with those of equivalent full-fat dairy products are two core strategies to improve the flavor of reduced-fat dairy products. In the future, better modulation of the behavior of flavor compounds by various methods is promising to replicate the flavor properties of fat in RFDPs and meet consumer sensory demands.
Collapse
Affiliation(s)
- Weizhe Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nasi Ai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China.
| |
Collapse
|
2
|
K R, S VK, Saravanan P, Rajeshkannan R, Rajasimman M, Kamyab H, Vasseghian Y. Exploring the diverse applications of Carbohydrate macromolecules in food, pharmaceutical, and environmental technologies. ENVIRONMENTAL RESEARCH 2024; 240:117521. [PMID: 37890825 DOI: 10.1016/j.envres.2023.117521] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Carbohydrates are a class of macromolecules that has significant potential across several domains, including the organisation of genetic material, provision of structural support, and facilitation of defence mechanisms against invasion. Their molecular diversity enables a vast array of essential functions, such as energy storage, immunological signalling, and the modification of food texture and consistency. Due to their rheological characteristics, solubility, sweetness, hygroscopicity, ability to prevent crystallization, flavour encapsulation, and coating capabilities, carbohydrates are useful in food products. Carbohydrates hold potential for the future of therapeutic development due to their important role in sustained drug release, drug targeting, immune antigens, and adjuvants. Bio-based packaging provides an emerging phase of materials that offer biodegradability and biocompatibility, serving as a substitute for traditional non-biodegradable polymers used as coatings on paper. Blending polyhydroxyalkanoates (PHA) with carbohydrate biopolymers, such as starch, cellulose, polylactic acid, etc., reduces the undesirable qualities of PHA, such as crystallinity and brittleness, and enhances the PHA's properties in addition to minimizing manufacturing costs. Carbohydrate-based biopolymeric nanoparticles are a viable and cost-effective way to boost agricultural yields, which is crucial for the increasing global population. The use of biopolymeric nanoparticles derived from carbohydrates is a potential and economically viable approach to enhance the quality and quantity of agricultural harvests, which is of utmost importance given the developing global population. The carbohydrate biopolymers may play in plant protection against pathogenic fungi by inhibiting spore germination and mycelial growth, may act as effective elicitors inducing the plant immune system to cope with pathogens. Furthermore, they can be utilised as carriers in controlled-release formulations of agrochemicals or other active ingredients, offering an alternative approach to conventional fungicides. It is expected that this review provides an extensive summary of the application of carbohydrates in the realms of food, pharmaceuticals, and environment.
Collapse
Affiliation(s)
- Ramaprabha K
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Venkat Kumar S
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
3
|
The Role of Starch in Shaping the Rheo-Mechanical Properties of Fat-in-Water Emulsions. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3040047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The DMA technique was used to conduct experiments on the rheo-mechanical properties of emulsified bovine fat meat products stabilised with potato starch. Starch gels with starch concentrations corresponding to the concentration of starch in water in the emulsions under analysis were used as control systems. The research showed that the rheo-mechanical properties of starch gels and starch–fat gels result from the conformational changes occurring within the structural elements of their spatial network. In starch gels, segments formed by complex associations of amylose chains are structural elements, whereas in starch–fat gels (emulsions) these are additionally amylose–fat complexes. Changes occurring during progressive retrogradation increase the degree of cross-linking in them. In starch gels, they are conditioned by the starch concentration, whereas in emulsions they are conditioned by the concentration of starch and the presence of fat. The parameters obtained by adjusting the Avrami equation to the data obtained with the DMA method enabled the determination of three forms of organisation of the dispersion structure of starch–fat systems. Each of these forms of structure organisation is conditioned by the concentration of starch in the emulsion system.
Collapse
|
4
|
Domínguez R, Lorenzo JM, Pateiro M, Munekata PES, Alves Dos Santos B, Basso Pinton M, Cichoski AJ, Bastianello Campagnol PC. Main animal fat replacers for the manufacture of healthy processed meat products. Crit Rev Food Sci Nutr 2022; 64:2513-2532. [PMID: 36123812 DOI: 10.1080/10408398.2022.2124397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The technological, sensory, and nutritional characteristics of meat products are directly related to their animal fat content. Adding animal fat to meat products significantly influences their sensory properties, such as color, taste, and aroma. In addition, the physicochemical properties of fat decisively contribute to the texture of meat products, playing a fundamental role in improving the properties of viscosity, creaminess, chewiness, cohesiveness, and hardness. However, meat products' high animal fat content makes them detrimental to a healthy diet. Therefore, reducing the fat content of meat products is an urgent need, but it is a challenge for researchers and the meat industry. The fat reduction in meat products without compromising the product's quality and with minor impacts on the production costs is not a simple task. Thus, strategies to reduce the fat content of meat products should be studied with caution. During the last decades, several fat replacers were tested, but among all of them, the use of flours and fibers, hydrocolloids, mushrooms, and some animal proteins (such as whey and collagen) presented promising results. Additionally, multiple strategies to gel oils of vegetable origin are also a current topic of study, and these have certain advantages such as their appearance (attempts to imitate animal fat), while also improving the nutritional profile of the lipid fraction of the products meat. However, each of these fat substitutes has both advantages and limitations in their use, which will be discussed in subsequent sections. Therefore, due to the growing interest in this issue, this review focuses on the main substitutes for animal fat used in the production of meat products, offering detailed and updated information on the latest discoveries and advances in this area.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Ourense, Spai
| | | | | | | | | |
Collapse
|
5
|
Schädle CN, Bader-Mittermaier S, Sanahuja S. The Effect of Corn Dextrin on the Rheological, Tribological, and Aroma Release Properties of a Reduced-Fat Model of Processed Cheese Spread. Molecules 2022; 27:molecules27061864. [PMID: 35335227 PMCID: PMC8955635 DOI: 10.3390/molecules27061864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Low-calorie and low-fat foods have been introduced to the market to fight the increasing incidence of overweightness and obesity. New approaches and high-quality fat replacers may overcome the poor organoleptic properties of such products. A model of processed cheese spread (PCS) was produced as a full-fat version and with three levels of fat reduction (30%, 50%, and 70%). Fat was replaced by water or by corn dextrin (CD), a dietary fiber. Additionally, in the 50% reduced-fat spreads, fat was replaced by various ratios of CD and lactose (100:0, 75:25, 50:50, 25:75, and 0:100). The effect of each formulation was determined by measuring the textural (firmness, stickiness, and spreadability), rheological (flow behavior and oscillating rheology), tribological, and microstructural (cryo-SEM) properties of the samples, as well as the dynamic aroma release of six aroma compounds typically found in cheese. Winter’s critical gel theory was a good approach to characterizing PCS with less instrumental effort and costs: the gel strength and interaction factors correlated very well with the spreadability and lubrication properties of the spreads. CD and fat exhibited similar interaction capacities with the aroma compounds, resulting in a similar release pattern. Overall, the properties of the sample with 50% fat replaced by CD were most similar to those of the full-fat sample. Thus, CD is a promising fat replacer in PCS and, most likely, in other dairy-based emulsions.
Collapse
Affiliation(s)
- Christopher N. Schädle
- Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg, Henkestraße 9, 91054 Erlangen, Germany
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany;
- Correspondence:
| | - Stephanie Bader-Mittermaier
- Department of Food Process Development, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Str. 35, 85354 Freising, Germany;
| | - Solange Sanahuja
- School of Agricultural, Forest and Food Sciences (HAFL), Bern University of Applied Sciences, Länggasse 85, 3052 Zollikofen, Switzerland;
| |
Collapse
|