1
|
Rodrigues JL, Braga LG, Watanabe RN, Schenkel FS, Berry DP, Buzanskas ME, Munari DP. Genetic diversity and selection signatures in sheep breeds. J Appl Genet 2025:10.1007/s13353-025-00941-z. [PMID: 39883377 DOI: 10.1007/s13353-025-00941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
Natural and artificial selection in domesticated animals can cause specific changes in genomic regions known as selection signatures. Our study used the integrated haplotype score (iHS) and Tajima's D tests within non-overlapping windows of 100 kb to identify selection signatures, in addition to genetic diversity and linkage disequilibrium estimates in 9498 sheep from breeds in Ireland (Belclare, Charollais, Suffolk, Texel, and Vendeen). The mean observed and expected heterozygosity for all the sheep breeds were 0.353 and 0.355, respectively. Suffolk had the least genetic variation and, along with Texel, had slower linkage disequilibrium decay. iHS and Tajima's D detected selection signatures for all breeds, with some regions overlapping, thus forming longer segments of selection signatures. Common selection signatures were identified across iHS and Tajima's D methods for all breeds, with Belclare and Texel having several common regions under positive selection. Several genes were detected within the selection signature regions, including ITGA4, TLR3, and TGFB2 related to the immune system against endoparasites; DLG1, ROBO2, MXI1, MTMR2, CEP57, and FAM78B related to reproductive traits; WDR70 related to milk traits; SCHM1 and MYH15 related to meat traits; and TAS2R4, TAS2R39, and TAS2R40 related to adaptive traits. In conclusion, our results demonstrated moderate genetic diversity in the sheep breeds and detected and characterized selection signatures harboring genes associated with reproductive traits, milk production, meat production, and adaptive traits such as endoparasite resistance.
Collapse
Affiliation(s)
- Julia Lisboa Rodrigues
- Departamento de Ciências Exatas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil
| | - Larissa Graciano Braga
- Departamento de Ciências Exatas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil
| | - Rafael Nakamura Watanabe
- Departamento de Ciências Exatas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil
| | - Flávio Schramm Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - Donagh Pearse Berry
- Animal & Grassland Research and Innovation Center, Moorepark, Fermoy, Co. Cork, Teagasc, Ireland
| | - Marcos Eli Buzanskas
- Departamento de Melhoramento e Nutrição Animal, Universidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária e Zootecnia, Botucatu, Brazil
| | - Danísio Prado Munari
- Departamento de Ciências Exatas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil.
| |
Collapse
|
2
|
Chen X, Sha Y, Liu X, He Y, Li W, Yao L, Wang J, Yang W, Chen Q, Gao M, Huang W, Ma B. The quality of Tibetan sheep meat from pastures was synergistically regulated by the rumen microbiota and related genes at different phenological stages. Front Vet Sci 2025; 11:1484175. [PMID: 39840335 PMCID: PMC11747153 DOI: 10.3389/fvets.2024.1484175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Meat quality is a key indicator of meat performance in ruminants, and its mechanism and regulation are also key to ruminant research. Studies have shown that animal meat quality is related to the gut microbiota. In this study, RT-qPCR and 16S omics were employed to assess meat quality and intestinal microbiota. The objective was to investigate the influence of seasonal variations on the meat quality of Tibetan sheep ewes by examining the rumen microflora, meat quality attributes, and associated gene expression profiles over three distinct months: May, August, and December.The results indicate that muscle tenderness was significantly greater (p < 0.001) in the grass period than in the regrowth and dry grass periods and was highest in the longest dorsal muscle. The cooking rate of the foreleg muscle was significantly greater (p < 0.05) than that during the regrowth and dry grass periods, and the pH24h significantly differed (p < 0.05) across the different seasonal periods. The crude protein content of the longest back muscle and the foreleg muscle was significantly greater (p < 0.001) than that of the wither and grass stages during the regrowth period and slightly decreased during the grass stage. The crude fat and crude ash contents of the three groups differed significantly, and the fat content during the grass stage was significantly (p < 0.05) greater than that during the regrowth stage and the wither stage. Expression analysis of genes related to meat quality revealed that the expression of the ADSL gene was significantly greater (p < 0.05) in the anterior and posterior leg muscles during the grass period than during the regrowth and wilting periods, whereas the expression of the FABP3 gene was lower than that during these two periods. Correlation analysis revealed that Rikenellaceae_RC9_gut_group was significantly positively correlated (p < 0.05) with shear forceand cooked meat percentage and significantly negatively correlated (p < 0.05). Ruminococcus and Butyrivibrio were significantly positively correlated (p < 0.05) with CAST and highly significantly positively correlated (p < 0.05). In conclusion, meat quality during different seasons is regulated by the rumen microbiota and their associated genes.
Collapse
Affiliation(s)
- Xiaowei Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Sha
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Liangwei Yao
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Yang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qianling Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Min Gao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wei Huang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bin Ma
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Zhangye City Livestock Breeding and Improvement Workstation, Zhangye, China
| |
Collapse
|
3
|
Yang P, Song X, Zhang L, Wang X, Han Z, Wang R, Yang M, Liu P, Zhang Z. Unraveling the molecular landscape of breast muscle development in domestic Yuzhong pigeons and European meat pigeon: Insights from Iso-seq and RNA-seq analysis. PLoS One 2024; 19:e0305907. [PMID: 39052586 PMCID: PMC11271864 DOI: 10.1371/journal.pone.0305907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
The mechanisms governing gene regulation in domestic Yuzhong pigeon breast muscle development remain largely elusive. Here, we conducted a comparative analysis using Iso-seq and RNA-seq data from domestic Yuzhong pigeons and European meat pigeons to uncover signaling pathways and genes involved in breast muscle development. The Iso-seq data from domestic Yuzhong pigeons yielded 131,377,075 subreads, resulting in 16,587 non-redundant high-quality full-length transcripts post-correction. Furthermore, utilizing pfam, CPC, PLEK, and CPAT, we predicted 5575, 4973, 2333, and 4336 lncRNAs, respectively. Notably, several genes potentially implicated in breast muscle development were identified, including tropomyosin beta chain, myosin regulatory light chain 2, and myosin binding protein C. KEGG enrichment analysis revealed critical signaling pathways in breast muscle development, spanning carbon metabolism, biosynthesis of amino acids, glycolysis/gluconeogenesis, estrogen signaling, PI3K-AKT signaling, protein processing in the endoplasmic reticulum, oxidative phosphorylation, pentose phosphate pathway, fructose and mannose metabolism, and tight junctions. These findings offer insights into the biological processes driving breast muscle development in domestic Yuzhong pigeon, contributing to our understanding of this complex phenomenon.
Collapse
Affiliation(s)
- Pengkun Yang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xinghui Song
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Liheng Zhang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xinlei Wang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhanbing Han
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Runzhi Wang
- Nanjing Institute of Animal Husbandry and Poultry Science, Nanjing, China
| | - Mingjun Yang
- Henan Tiancheng Pigeon Industry Co., Ltd, Pingdingshan, China
| | - Peiyao Liu
- Henan Tiancheng Pigeon Industry Co., Ltd, Pingdingshan, China
| | - Zhen Zhang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
4
|
Liu X, Zheng J, Ding J, Wu J, Zuo F, Zhang G. When Livestock Genomes Meet Third-Generation Sequencing Technology: From Opportunities to Applications. Genes (Basel) 2024; 15:245. [PMID: 38397234 PMCID: PMC10888458 DOI: 10.3390/genes15020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/30/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Third-generation sequencing technology has found widespread application in the genomic, transcriptomic, and epigenetic research of both human and livestock genetics. This technology offers significant advantages in the sequencing of complex genomic regions, the identification of intricate structural variations, and the production of high-quality genomes. Its attributes, including long sequencing reads, obviation of PCR amplification, and direct determination of DNA/RNA, contribute to its efficacy. This review presents a comprehensive overview of third-generation sequencing technologies, exemplified by single-molecule real-time sequencing (SMRT) and Oxford Nanopore Technology (ONT). Emphasizing the research advancements in livestock genomics, the review delves into genome assembly, structural variation detection, transcriptome sequencing, and epigenetic investigations enabled by third-generation sequencing. A comprehensive analysis is conducted on the application and potential challenges of third-generation sequencing technology for genome detection in livestock. Beyond providing valuable insights into genome structure analysis and the identification of rare genes in livestock, the review ventures into an exploration of the genetic mechanisms underpinning exemplary traits. This review not only contributes to our understanding of the genomic landscape in livestock but also provides fresh perspectives for the advancement of research in this domain.
Collapse
Affiliation(s)
- Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Junyuan Zheng
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Jialan Ding
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| | - Gongwei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing 402460, China; (X.L.); (J.Z.); (J.D.); (J.W.); (F.Z.)
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, Chongqing 402460, China
| |
Collapse
|
5
|
Yi W, Hu M, Shi L, Li T, Bai C, Sun F, Ma H, Zhao Z, Yan S. Whole genome sequencing identified genomic diversity and candidated genes associated with economic traits in Northeasern Merino in China. Front Genet 2024; 15:1302222. [PMID: 38333624 PMCID: PMC10851152 DOI: 10.3389/fgene.2024.1302222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction: Northeast Merino (NMS) is a breed developed in Northeast China during the 1960s for wool and meat production. It exhibits excellent traits such as high wool yield, superior meat quality, rapid growth rate, robust disease resistance, and adaptability to cold climates. However, no studies have used whole-genome sequencing data to investigate the superior traits of NMS. Methods: In this study, we investigated the population structure, genetic diversity, and selection signals of NMS using whole-genome sequencing data from 20 individuals. Two methods (integrated haplotype score and composite likelihood ratio) were used for selection signal analysis, and the Fixation Index was used to explore the selection signals of NMS and the other two breeds, Mongolian sheep and South African meat Merino. Results: The results showed that NMS had low inbreeding levels, high genomic diversity, and a pedigree of both Merino breeds and Chinese local breeds. A total length of 14.09 Mb genomic region containing 287 genes was detected using the two methods. Further exploration of the functions of these genes revealed that they are mainly concentrated in wool production performance (IRF2BP2, MAP3K7, and WNT3), meat production performance (NDUFA9, SETBP1, ZBTB38, and FTO), cold resistance (DNAJC13, LPGAT1, and PRDM16), and immune response (PRDM2, GALNT8, and HCAR2). The selection signals of NMS and the other two breeds annotated 87 and 23 genes, respectively. These genes were also mainly focused on wool and meat production performance. Conclusion: These results provide a basis for further breeding improvement, comprehensive use of this breed, and a reference for research on other breeds.
Collapse
Affiliation(s)
- Wenfeng Yi
- College of Animal Science, Jilin University, Changchun, China
| | - Mingyue Hu
- College of Animal Science, Jilin University, Changchun, China
| | - Lulu Shi
- College of Animal Science, Jilin University, Changchun, China
| | - Ting Li
- College of Animal Science, Jilin University, Changchun, China
| | - Chunyan Bai
- College of Animal Science, Jilin University, Changchun, China
| | - Fuliang Sun
- College of Agriculture, Yanbian University, Yanji, China
| | - Huihai Ma
- Institute of Animal Husbandry and Veterinary, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Zhongli Zhao
- Institute of Animal Husbandry and Veterinary, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
6
|
Ren Y, Chen X, Zheng X, Wang F, Sun R, Wei L, Zhang Y, Liu H, Lin Y, Hong L, Huang X, Chao Z. Diverse WGBS profiles of longissimus dorsi muscle in Hainan black goats and hybrid goats. BMC Genom Data 2023; 24:77. [PMID: 38097986 PMCID: PMC10720224 DOI: 10.1186/s12863-023-01182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Goat products have played a crucial role in meeting the dietary demands of people since the Neolithic era, giving rise to a multitude of goat breeds globally with varying characteristics and meat qualities. The primary objective of this study is to pinpoint the pivotal genes and their functions responsible for regulating muscle fiber growth in the longissimus dorsi muscle (LDM) through DNA methylation modifications in Hainan black goats and hybrid goats. METHODS Whole-genome bisulfite sequencing (WGBS) was employed to scrutinize the impact of methylation on LDM growth. This was accomplished by comparing methylation differences, gene expression, and their associations with growth-related traits. RESULTS In this study, we identified a total of 3,269 genes from differentially methylated regions (DMR), and detected 189 differentially expressed genes (DEGs) through RNA-seq analysis. Hypo DMR genes were primarily enriched in KEGG terms associated with muscle development, such as MAPK and PI3K-Akt signaling pathways. We selected 11 hub genes from the network that intersected the gene sets within DMR and DEGs, and nine genes exhibited significant correlation with one or more of the three LDM growth traits, namely area, height, and weight of loin eye muscle. Particularly, PRKG1 demonstrated a negative correlation with all three traits. The top five most crucial genes played vital roles in muscle fiber growth: FOXO3 safeguarded the myofiber's immune environment, FOXO6 was involved in myotube development and differentiation, and PRKG1 facilitated vasodilatation to release more glucose. This, in turn, accelerated the transfer of glucose from blood vessels to myofibers, regulated by ADCY5 and AKT2, ultimately ensuring glycogen storage and energy provision in muscle fibers. CONCLUSION This study delved into the diverse methylation modifications affecting critical genes, which collectively contribute to the maintenance of glycogen storage around myofibers, ultimately supporting muscle fiber growth.
Collapse
Affiliation(s)
- Yuwei Ren
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Xing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, 430000, China
| | - Xinli Zheng
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Feng Wang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Ruiping Sun
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Limin Wei
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Yan Zhang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Hailong Liu
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Yanning Lin
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Lingling Hong
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Xiaoxian Huang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhe Chao
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China.
| |
Collapse
|
7
|
Woolley SA, Salavati M, Clark EL. Recent advances in the genomic resources for sheep. Mamm Genome 2023; 34:545-558. [PMID: 37752302 PMCID: PMC10627984 DOI: 10.1007/s00335-023-10018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Sheep (Ovis aries) provide a vital source of protein and fibre to human populations. In coming decades, as the pressures associated with rapidly changing climates increase, breeding sheep sustainably as well as producing enough protein to feed a growing human population will pose a considerable challenge for sheep production across the globe. High quality reference genomes and other genomic resources can help to meet these challenges by: (1) informing breeding programmes by adding a priori information about the genome, (2) providing tools such as pangenomes for characterising and conserving global genetic diversity, and (3) improving our understanding of fundamental biology using the power of genomic information to link cell, tissue and whole animal scale knowledge. In this review we describe recent advances in the genomic resources available for sheep, discuss how these might help to meet future challenges for sheep production, and provide some insight into what the future might hold.
Collapse
Affiliation(s)
- Shernae A Woolley
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Mazdak Salavati
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Scotland's Rural College, Parkgate, Barony Campus, Dumfries, DG1 3NE, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
8
|
Chen B, Yue Y, Li J, Liu J, Yuan C, Guo T, Zhang D, Yang B, Lu Z. Transcriptome-metabolome analysis reveals how sires affect meat quality in hybrid sheep populations. Front Nutr 2022; 9:967985. [PMID: 36034900 PMCID: PMC9403842 DOI: 10.3389/fnut.2022.967985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 12/03/2022] Open
Abstract
Crossbreeding improves and enhances meat quality and is widely used in sheep production; however, the molecular mechanisms underlying the meat quality of various crossbred sheep remain unknown. In this study, male Southdown, Suffolk and Hu sheep were crossbred with female Hu sheep, and the transcriptomes and metabolomes of the longissimus dorsi muscle of the F1 generation were sequenced to explore how different sire breeds affect meat quality. The results showed that 631 differentially expressed genes and 119 significantly altered metabolites contributed to muscle development characteristics and meat quality-related diversity (P < 0.05). These genes and metabolites were significantly enriched in lipid metabolism pathways, including arachidonic acid metabolism and PPAR signaling. Several candidate genes were associated with muscle growth, such as MYLK3, MYL10, FIGN, MYH8, MYOM3, LMCD1, and FLRT1. Among these, MYH8 and MYL10 participated in regulating muscle growth and development and were correlated with meat quality-related fatty acid levels (|r| > 0.5 and p < 0.05). We selected mRNA from four of these genes to verify the accuracy of the sequencing data via qRT-PCR. Our findings provide further insight into the key genes and metabolites involved in muscle growth and meat quality in hybrid sheep populations.
Collapse
Affiliation(s)
- Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yaojing Yue
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianye Li
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Zhang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bohui Yang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
9
|
Gagaoua M. Recent Advances in OMICs Technologies and Application for Ensuring Meat Quality, Safety and Authenticity. Foods 2022; 11:foods11162532. [PMID: 36010532 PMCID: PMC9407444 DOI: 10.3390/foods11162532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| |
Collapse
|