1
|
Maojin T, Zheng Z, Ying H, Yanyan H, Liang Z. Bacterial Spore Inactivation Technology in Solid Foods: A Review. J Food Prot 2025; 88:100479. [PMID: 40081811 DOI: 10.1016/j.jfp.2025.100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
In response to physiological stress, some bacterial strains have the ability to produce spores that are able to resist conventional food heating processes and even more extreme environmental factors. Dormant spores can germinate and return to their vegetative state during food preservation, leading to food spoilage, or safety issues that pose a risk to human health. Thus, spore inactivation technology is gaining more and more attention. Several techniques have been used in liquid foods to efficiently inactivate spores, including novel thermal and nonthermal treatments. However, solid foods have unique characteristics that make it challenging to achieve the same spore inactivation effect as in previous liquid food studies. Therefore, exploring the effectiveness of spore inactivation techniques in solid foods is of great significance, and clarifying the mechanism for deactivating spore through related techniques is informative in enhancing the effectiveness of spore deactivation in solid foods. This article reviews the practical applications of spore inactivation technology in solid foods.
Collapse
Affiliation(s)
- Tian Maojin
- School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zhou Zheng
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Hu Ying
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Han Yanyan
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China
| | - Zhou Liang
- School of Public Health, Zunyi Medical University, Zunyi, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Guizhou Province, China.
| |
Collapse
|
2
|
Sun Y, Jia Y, Wang K, Wang S, Cui B, Mao C, Guo X, Feng Y, Fu H, Chen X, Wang Y, Zhang Z, Wang Y. The exploration of pasteurization processes and mechanisms of inactivation of Bacillus cereus ATCC 14579 using radio frequency energy. Int J Food Microbiol 2025; 426:110919. [PMID: 39321599 DOI: 10.1016/j.ijfoodmicro.2024.110919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Radio frequency (RF) heating has been utilized to investigate sterilization techniques, but the mechanism of sterilization via RF heating, particularly on Bacillus cereus (B. cereus), has not been thoroughly examined. In this paper, sterilization processes and potential bactericidal mechanisms of B. cereus using RF were investigated. The best heating and sterilization efficiency was achieved at (Electrode gap 130 mm, conductivity of bacterial suspension 0.1 S/m, volume of bacterial suspension 40 mL). Heating a suspension of B. cereus to 90 °C in 80 s using RF reduced the number of viable bacteria by 4.87 logarithms. At the cellular level, there was a significant leakage of nucleic acids and proteins from the bacterial cells. Additionally, the integrity of the cell membrane was severely damaged, with a decrease in ATP concentration of 2.08 mM, Na, K-ATPase activity to 10.7 (U/109 cells), and Ca, Mg-ATPase activity to 11.6 (U/109 cells). At the molecular level, transcriptomics analysis showed that RF heating of B. cereus to 65 °C produced 650 more differentially expressed genes (DEGs) compared with RF heating to 45 °C. The GO annotation analysis indicated that the majority of differentially expressed genes (DEGs) were predominantly associated with cellular components. KEGG metabolic analysis showed enrichment in microbial metabolism in diverse environments, etc. This study investigated the potential bactericidal mechanism of B. cereus using RF, and provided some theoretical basis for the research of the sterilization of B. cereus.
Collapse
Affiliation(s)
- Yanan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750000, PR China
| | - Yiming Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Ke Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Songlei Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region 750000, PR China
| | - Baozhong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Chao Mao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiaoying Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yuxin Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zhenna Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
3
|
Kim J, Choi DS, Kim YH, Park CW, Kim HW. Optimal conditions for beef tenderization through radiofrequency heating with cold air. J Food Sci 2024; 89:370-389. [PMID: 37983872 DOI: 10.1111/1750-3841.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
High-temperature (15-37°C) aging can shorten the tenderizing time of beef; however, the use of constant temperature heating can lead to microbial spoilage. This study tested radiofrequency (RF) tenderization (RF-T) to find the appropriate conditions for the aging-like effect of beef without microbial spoilage. After subjecting beef to 22 h RF-T with four different cooling temperatures (15, 5, -10, and -20°C), the proliferated aerobic bacteria on the surface showed a concentration of 6-6.2 log CFU/g at -10 and -20°C, lower than 7-7.5 log CFU/g at 15 and 5°C. When beef was treated with 25 W/kg RF heating power for 48 h RF-T, the estimated reduction rate of the sliced shear force (SSF) and the increase rate of glutamic acid based on the weight before RF-T were 22.6% and 1.51-fold, which were greater than 19.6% and 1.37-fold with 20 W/kg, and 11.0% and 1.11-fold with 15 W/kg. The optimal specific RF heating power was calculated as 30 W/kg from the results' extrapolation. When processed for 48 h under optimal conditions (30 W/kg specific RF heating power, -20°C cooling air), the tenderization rate and the increased rates of free amino acids based on the weight before RF-T of beef reached over 20% and 1.5-fold with 5.22 log CFU/g aerobic bacteria, which was lesser than the Korean regulation value of 6.7 log CFU/g (5 × 106 CFU/g). Therefore, RF-T could be proposed as a promising high-temperature tenderization method with lowered risk of microbial spoilage. PRACTICAL APPLICATION: We showed that lowering the chamber temperature during RF-T was effective in surface drying and inhibiting aerobic bacteria. RF-T for 24-48 h with 30 W/kg specific RF heating power had an aging-like effect given tenderization and increase in FAAs. Moreover, by providing the matching circuit and impedance during RF-T, this method could be industrially reproducible.
Collapse
Affiliation(s)
- Jinse Kim
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do, Republic of Korea
| | - Dong Soo Choi
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do, Republic of Korea
| | - Yong Hoon Kim
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do, Republic of Korea
| | - Chun Wan Park
- Department of Agricultural Engineering, National Institute of Agricultural Sciences, RDA, Jeonju, Jeollabuk-do, Republic of Korea
| | - Hyun Wook Kim
- Department of Animal Biotechnology & Environment, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do, Republic of Korea
| |
Collapse
|
4
|
Wang S, Li R. Applications of Radio Frequency Heating in Food Processing. Foods 2023; 12:1133. [PMID: 36981060 PMCID: PMC10048608 DOI: 10.3390/foods12061133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Considering safety concerns regarding postharvest agricultural products or foods, environmental pollution caused by chemical fumigations, and increased international regulations to limit the use of fumigants, it is an extremely urgent task to develop novel and environmentally friendly physical alternatives to the postharvest control of insect pests and pathogens [...].
Collapse
Affiliation(s)
- Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
5
|
Cui B, Ye P, Wang K, Sun Y, Mao C, Pang H, Fu H, Wang Y, Chen X, Wang Y. Developing radio frequency (RF) heating protocol in packed tofu processing by computer simulation. Curr Res Food Sci 2023; 6:100474. [PMID: 36926418 PMCID: PMC10011744 DOI: 10.1016/j.crfs.2023.100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Packed tofu was produced by reheating the mixture of preheated soymilk and coagulant in a sealed container. This study aimed to replace the conventional heating method with RF heating during the reheating of soymilk for packed tofu production. In this study, dielectric properties (DPs), thermal properties (TPs), and rheological properties of soymilk were determined. A mathematical model was developed to simulate the RF heating process of soymilk to determine the appropriate packaging geometry. Water holding capacity (WHC), texture analysis, color measurement, and microstructure observation were performed to evaluate the quality of RF-heated packed tofu. Results showed that soymilk added with Glucono-Delta-Lactone (GDL) coagulated at the temperature above 60 °C, and the loss factor (ε″) was slightly reduced when soymilk was converted to tofu at coagulation temperature. Based on the simulation results, the cylindrical vessel (φ50 mm × 100 mm) was chosen as the soymilk container for desired heating rate (5.9 °C/min) and uniformity (λ = 0.0065, 0.0069, 0.0016 for top, middle, and bottom layers). The texture analysis revealed that the hardness and chewiness of packed tofu prepared by RF heating were enhanced (maximum 1.36 times and 1.21 times) compared with commercial packed tofu, while the springiness were not significantly changed. Furthermore, the denser network structure was observed inside RF-heated packed tofu by SEM. These results indicated that packed tofu prepared by RF heating was of higher gel strength and sensory quality. RF heating has the potential to be applied in packed tofu production.
Collapse
Affiliation(s)
- Baozhong Cui
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi, 712100, China
| | - Pengfei Ye
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi, 712100, China
| | - Ke Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi, 712100, China
| | - Yanan Sun
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi, 712100, China
| | - Chao Mao
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi, 712100, China
| | - Huiyun Pang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi, 712100, China
| | - Hongfei Fu
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi, 712100, China
| | - Yequn Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi, 712100, China
| | - Xiangwei Chen
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi, 712100, China
| | - Yunyang Wang
- Northwest A&F University, College of Food Science and Engineering, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Influence of the combination of cinnamon essential oil nanoemulsions and epsilon-polylysine on microbial community and quality of pork during refrigerated period and radio frequency cooking. Int J Food Microbiol 2022; 381:109911. [DOI: 10.1016/j.ijfoodmicro.2022.109911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022]
|
7
|
Sterilizing Ready-to-Eat Poached Spicy Pork Slices Using a New Device: Combined Radio Frequency Energy and Superheated Water. Foods 2022; 11:foods11182841. [PMID: 36140967 PMCID: PMC9497799 DOI: 10.3390/foods11182841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, a new device was used to inactivate G. stearothermophilus spores in ready-to-eat (RTE) poached spicy pork slices (PSPS) applying radio frequency (RF) energy (27.12 MHz, 6 kW) and superheated water (SW) simultaneously. The cold spot in the PSPS sample was determined. The effects of electrode gap and SW temperature on heating rate, spore inactivation, physiochemical properties (water loss, texture, and oxidation), sensory properties, and SEM of samples were investigated. The cold spot lies in the geometric center of the soup. The heating rate increased with increasing electrode gap and hit a peak under 190 mm. Radio frequency combined superheated water (RFSW) sterilization greatly decreased the come-up time (CUT) compared with SW sterilization, and a 5 log reduction in G. stearothermophilus spores was achieved. RFSW sterilization under 170 mm electrode gap reduced the water loss, thermal damage of texture, oxidation, and tissues and cells of the sample, and kept a better sensory evaluation. RFSW sterilization has great potential in solid or semisolid food processing engineering.
Collapse
|
8
|
Effects of radiofrequency blanching on lipoxygenase inactivation, physicochemical properties of sweet corn (Zea mays L.), and its correlation with cell morphology. Food Chem 2022; 394:133498. [PMID: 35728473 DOI: 10.1016/j.foodchem.2022.133498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of radiofrequency (RF) and boiling-water (BW) blanching on lipoxygenase (LOX) activity, physicochemical properties, and changes in the cellular morphology of sweet corn kernels. First, a speed-adjustable device was introduced to rotate the sample for improving heating uniformity. Then, the maximum RF heating rate and uniform temperature distribution of samples were obtained under 160 mm electrode gap, 120 g sample weight, and 14 r/min rotating speed. With increased RF heating temperature ranging from 50 °C to 80 °C, the residual activity of LOX significantly decreased to 4.68%. Samples blanched by RF treatment maintained better color, texture, and nutrient content than those by BW when similar levels of enzyme inactivation were achieved. Micrographs also showed the cells were increasingly damaged with increased RF heating temperature, whereas the cells were damaged much more severely when treated with BW. Besides, microscopic destruction of cells also explains the changes in physicochemical properties.
Collapse
|