1
|
da Silva RR, Odelli D, Descamps A, Scudeller LA, Doumert B, Perez J, Delaplace G, de Carvalho AF, de Sá Peixoto Junior PP. Multi-scale organization and rheology of casein and pea protein mixed hydrogels formed by acidification: Effects of ratio and temperature. Food Res Int 2025; 209:116242. [PMID: 40253183 DOI: 10.1016/j.foodres.2025.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
The growing demand for sustainable food alternatives is driving increased research into mixed protein systems. In view of this scenario, this study aims to investigate the structural organization and rheological properties of mixed hydrogels formed by casein micelles (CMs) and pea protein through acid gelation, as well as to understand the effects of protein ratio and temperature on gel structure. The objective is to elucidate how these variables influence network formation at multiple scales, providing insights into the design of novel food structures. Small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and rheological analyses were used to assess gel properties. The results indicate that mixed gels exhibit non-monotonic rheological behavior, with strong structural changes depending on the CM:pea ratio. At smaller scales (submicron sizes), there is no significant difference between pea or casein aggregates formed in mixed gels compared to those in pure gels. However, at larger scales (micron to tens of microns), the presence of pea in casein gels (or vice versa) has a significant impact on the protein network structure and gel properties, as seen in pore sizes and rheological behavior. Furthermore, temperature plays a crucial role, with effects observed at temperatures above 40 °C, mainly in casein-rich systems. This study provides a new perspective on the structuring of mixed protein gels and contributes to the development of hybrid food products.
Collapse
Affiliation(s)
- Raiane Rodrigues da Silva
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Davide Odelli
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Amandine Descamps
- UMET CNRS Laboratory, INRAE, UMR 8207-UMET-PIHM, Lille University, 59652 Villeneuve d'Ascq, France - UMET - Unité Matériaux et Transformations, équipe Processus aux Interfaces et Hygiène des Matériaux (PIHM), F-59000 Lille, France
| | - Luisa Azevedo Scudeller
- UMET CNRS Laboratory, INRAE, UMR 8207-UMET-PIHM, Lille University, 59652 Villeneuve d'Ascq, France - UMET - Unité Matériaux et Transformations, équipe Processus aux Interfaces et Hygiène des Matériaux (PIHM), F-59000 Lille, France
| | - Bertrand Doumert
- Université de Lille, CNRS, INRA, Centrale Lille, ENSCL, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000 Lille, France
| | - Javier Perez
- Synchrotron SOLEIL, SWING, F-91192 Gif Sur Yvette, France, France
| | - Guillaume Delaplace
- UMET CNRS Laboratory, INRAE, UMR 8207-UMET-PIHM, Lille University, 59652 Villeneuve d'Ascq, France - UMET - Unité Matériaux et Transformations, équipe Processus aux Interfaces et Hygiène des Matériaux (PIHM), F-59000 Lille, France
| | - Antônio Fernandes de Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil.
| | - Paulo Peres de Sá Peixoto Junior
- UMET CNRS Laboratory, INRAE, UMR 8207-UMET-PIHM, Lille University, 59652 Villeneuve d'Ascq, France - UMET - Unité Matériaux et Transformations, équipe Processus aux Interfaces et Hygiène des Matériaux (PIHM), F-59000 Lille, France.
| |
Collapse
|
2
|
Andaç AE, Tuncel NB, Tuncel NY. Characterisation of Pea Milk Analogues Using Different Production Techniques. Food Technol Biotechnol 2024; 62:177-187. [PMID: 39045306 PMCID: PMC11261646 DOI: 10.17113/ftb.62.02.24.8356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/29/2024] [Indexed: 07/25/2024] Open
Abstract
Research background Among legumes, peas are characterised by their high protein content, low glycaemic index and exceptional versatility. However, their potential as a food is often compromised by their undesirable off-flavour and taste. Hence, this study focuses on minimising off-flavours through simple pretreatments with the aim of improving the potential for the production of pea milk analogues. Pea milk analogues are a burgeoning type of plant-based milk alternatives in the growing plant-based market. Experimental approach Pea seeds were subjected to different pretreatments: (i) dry milling, (ii) blanching followed by soaking in alkaline solution and subsequent dehulling and (iii) vacuum. Typical physicochemical properties such as pH, viscosity, colour, titratable acidity and yield were measured to obtain a brief overview of the products. Consumer acceptance test, descriptive sensory analysis, gas chromatography-mass spectrometry and gas chromatography-olfactometry were used to map the complete sensory profile and appeal of the pea milk substitutes. Results and conclusions The L* values of the pea milk analogues were significantly lower than those of cow's milk, while a*, b*, viscosity and pH were similar. In the descriptive sensory analysis, sweet, astringent, pea-like, cooked, hay-like, boiled corn and green notes received relatively higher scores. The vacuum-treated pea milk analogues received higher scores for flavour and overall acceptability in the consumer acceptance test. The pretreatments resulted in significant changes in the volatile profiles of the pea milk analogues. Some volatiles typically associated with off-flavour, such as hexanal, were found in higher concentrations in blanched pea milk analogues. Among the applied pretreatments, vacuum proved to be the most effective method to reduce the content of volatile off-flavour compounds. Novelty and scientific contribution This study stands out as a rare investigation to characterise pea milk analogues and to evaluate the impact of simple pretreatments on the improvement of their sensory properties. The results of this study could contribute to the development of milk alternatives that offer both high nutritional value and strong appeal to consumers.
Collapse
Affiliation(s)
- Ali Emre Andaç
- Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17100 Çanakkale, Turkey
| | - Necati Barış Tuncel
- Onsekiz Mart University, Faculty of Engineering, Department of Food Engineering, 17100 Çanakkale, Turkey
| | - Neşe Yılmaz Tuncel
- Onsekiz Mart University, Faculty of Applied Sciences, Department of Food Technology, 17100 Çanakkale, Turkey
| |
Collapse
|
3
|
Zhao R, Fu W, Li D, Dong C, Bao Z, Wang C. Structure and functionality of whey protein, pea protein, and mixed whey and pea proteins treated by pH shift or high-intensity ultrasound. J Dairy Sci 2024; 107:726-741. [PMID: 37777001 DOI: 10.3168/jds.2023-23742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
Three modifications (pH shift, ultrasound, combined pH shift and ultrasound) induced alterations in pure whey protein isolate (WPI), pea protein isolate (PPI), and mixed whey and pea protein (WPI-PPI) were investigated. The processing effect was related to the protein type and technique used. Solubility of WPI remained unchanged by various treatments. Particle size was enlarged by pH shift while reduced by ultrasound and combined approach. All methods exposed more surface hydrophobic groups on WPI, while pH shift and joint processing was detrimental to its emulsifying activity. The PPI and mixture exhibited similar responses toward the modifications. Solubility of PPI and the blend enhanced in the sequence of pH shift and ultrasound > ultrasound > pH shift. Individual approach expanded while co-handling diminished the particle diameter. Treatments also caused more disclosure of hydrophobic regions in PPI and WPI-PPI and emulsifying activity was ameliorated in the order of pH shift and ultrasound > ultrasound > pH shift.
Collapse
Affiliation(s)
- Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Wenfei Fu
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Dan Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Chao Dong
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Zhaoxue Bao
- Hinggan League Mengyuan Technology Testing Service Co. Ltd., Ulanhot 137400, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Zhang X, Zhang T, Li S, Zhao R, Li S, Wang C. Mixed whey and pea protein based cold-set emulsion gels induced by calcium chloride: Fabrication and characterization. Int J Biol Macromol 2023; 253:126641. [PMID: 37657583 DOI: 10.1016/j.ijbiomac.2023.126641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The cold-set gels of oil-in-water emulsions stabilized by mixtures of whey protein isolate (WPI) and pea protein isolate (PPI) with mass ratios of 10:0, 7:3, 5:5, 3:7, and 0:10 were investigated to evaluate the possibility of pea protein to replace milk protein. Particle size and surface charge of emulsions increased and decreased with raised PPI content, respectively. The redness and yellowness of emulsion gels were strengthened with elevated pea protein percentage and independent of calcium concentration applied. Considerable differences in water holding capacity were observed between samples with different mixed proteins and high percentage of pea protein gave better water retaining ability. Gradual decreases in hardness and chewiness of emulsion gels were observed at three calcium levels with the increased PPI proportion. FT-IR spectra indicated no new covalent bonds were generated between samples with different whey and pea protein mass ratios. As PPI concentration elevated, the network structure of emulsion gels gradually became loose and disordered. The established cold-set calcium-induced whey/pea protein composite gels may have the potential to be utilized as a new material to encapsulate and deliver environment sensitive bio-active substances.
Collapse
Affiliation(s)
- Xiaoge Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Siyao Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shuyi Li
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
5
|
Nascimento LGL, Queiroz LS, Petersen HO, Marie R, Silva NFN, Mohammadifar MA, de Sá Peixoto Júnior PP, Delaplace G, de Carvalho AF, Casanova F. High-intensity ultrasound treatment on casein: Pea mixed systems: Effect on gelling properties. Food Chem 2023; 422:136178. [PMID: 37119595 DOI: 10.1016/j.foodchem.2023.136178] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
This study aimed to investigate the suitability of the application of high-intensity ultrasounds (HIUS) to improve the acid induced gelation of mixed protein systems formed by casein micelles (CMs) and pea. The protein suspensions were prepared in different protein ratios CMs: pea (100:0, 80:20, 50:50, 20:80, 0:100) at 8% (w/w) total protein concentration. In the suspensions, the ultrasound treatment produced an increase in solubility, surface hydrophobicity, and a decrease in the samples' viscosity, with more remarkable differences in protein blends in which pea protein was the major component. However, the replacement of 20% of CMs for pea proteins highly affected the gel elasticity. Hence, the creation of smaller and more hydrophobic building blocks before acidification due to the HIUS treatment increased the elasticity of the gels up to 10 times. Therefore, high-intensity ultrasounds are a suitable green technique to increase the gelling properties of CMs: pea systems.
Collapse
Affiliation(s)
- Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil; Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, Villeneuve d'Ascq, France
| | - Lucas Sales Queiroz
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil; Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Heidi Olander Petersen
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | - Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | | | - Mohammed Amin Mohammadifar
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark
| | | | - Guillaume Delaplace
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, Villeneuve d'Ascq, France
| | - Antônio Fernandes de Carvalho
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), 36570-900 Viçosa, Minas Gerais, Brazil
| | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Ørsteds Plads, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
6
|
Lima Nascimento LG, Odelli D, Fernandes de Carvalho A, Martins E, Delaplace G, Peres de Sá Peixoto Júnior P, Nogueira Silva NF, Casanova F. Combination of Milk and Plant Proteins to Develop Novel Food Systems: What Are the Limits? Foods 2023; 12:2385. [PMID: 37372596 DOI: 10.3390/foods12122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the context of a diet transition from animal protein to plant protein, both for sustainable and healthy scopes, innovative plant-based foods are being developing. A combination with milk proteins has been proposed as a strategy to overcome the scarce functional and sensorial properties of plant proteins. Based on this mixture were designed several colloidal systems such as suspensions, gels, emulsions, and foams which can be found in many food products. This review aims to give profound scientific insights on the challenges and opportunities of developing such binary systems which could soon open a new market category in the food industry. The recent trends in the formulation of each colloidal system, as well as their limits and advantages are here considered. Lastly, new approaches to improve the coexistence of both milk and plant proteins and how they affect the sensorial profile of food products are discussed.
Collapse
Affiliation(s)
- Luis Gustavo Lima Nascimento
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | - Davide Odelli
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | | | - Evandro Martins
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Guillaume Delaplace
- Laboratoire de Processus aux Interfaces et Hygiène des Matériaux, INRAE, 59009 Lille, France
| | | | | | - Federico Casanova
- Research Group for Food Production Engineering, National Food Institute, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Du X, Zhao Z, Li YX. Production of soluble pea protein/sodium caseinate co-dispersions using ultrasonication and their acid coagulation properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
The Potential of Food By-Products: Bioprocessing, Bioactive Compounds Extraction and Functional Ingredients Utilization. Foods 2022; 11:foods11244092. [PMID: 36553835 PMCID: PMC9778178 DOI: 10.3390/foods11244092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Achieving sustainability in the agro-food sector can only be possible with the valorization of food industry waste and side streams, products with an extremely high intrinsic value but often discarded because they are unfit for further processing that meets consumer expectations [...].
Collapse
|
9
|
Zhou X, Zhang C, Zhao L, Cao W, Zhou C, Xie X, Chen Y. Functionality of Pea-Grass Carp Co-Precipitated Dual-Protein as Affected by Extraction pH. Foods 2022; 11:3136. [PMID: 36230214 PMCID: PMC9562268 DOI: 10.3390/foods11193136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Isoelectric solubilisation/co-precipitation (ISP) has been proven to be a better method than blending for preparing plant-animal dual-proteins, which can achieve synergies in the functional properties of heterologous proteins. This paper aims to investigate the effect of extraction pH on the functional properties of co-precipitated dual-protein. The basic composition, subunit composition, solubility, surface hydrophobicity, emulsification and gel properties of co-precipitated dual-protein (Co) prepared from pea and grass carp with pH (2.0, 3.0, 9.0, 10.0 and 11.0) were analysed in this study using ISP. The results showed that the functional properties of Co (Co9, Co10, Co11) prepared by alkali extraction were generally better than those prepared by acid extraction (Co2, Co3). Among them, Co10 has the highest vicilin/legumin α + β value and solubility, while having the lowest surface hydrophobicity, making its emulsification and gel properties superior to other extraction pH values. This study provides an important method reference for preparing plant-animal Co with exceptional functional properties.
Collapse
Affiliation(s)
- Xiaohu Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, China
| | - Chaohua Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, China
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Xie
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, China
| | - YuLian Chen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang 422000, China
| |
Collapse
|