1
|
Wiącek AE, Sujka M. Physicochemical Characteristics of Porous Starch Obtained by Combined Physical and Enzymatic Methods-Part 2: Potential Application as a Carrier of Gallic Acid. Molecules 2024; 29:3570. [PMID: 39124975 PMCID: PMC11314488 DOI: 10.3390/molecules29153570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Wettability measurements were performed for aqueous dispersions of native and modified corn, potato, and pea starch granules deposited on glass plates by the thin layer method using test liquids of a different chemical nature (polar water and formamide or non-polar diiodomethane). High values of the determination coefficient R2 confirm that the linear regression model describes the relationship between the wetting time and the square of the penetration distance very well, indicating the linear nature of the Washburn relationship. A change in free energy (enthalpy) during the movement of the liquid in the porous layer was determined for all starches before and after modification in contact with test liquids. Wetting times for polar liquids increased significantly (from 3 to 4 fold), especially for corn starch. The lower the value of the adhesive tension, the easier the wetting process takes place, and consequently, the adsorption process is facilitated. Adhesive tension for polar substances applies to the adsorption of hydrophilic substances, while in the case of apolar substances, adhesive tension applies to the adsorption of hydrophobic substances. For the adsorption of gallic acid on starch, the relationships obtained for polar substances are crucial. The adsorption of gallic acid by forming hydrogen bonds or, more generally, donor-acceptor (acid-base) bonds is definitely higher for corn starch than other starches. Therefore, this starch has the most significant potential for use as a carrier of gallic acid or, more broadly, compounds from the polyphenol group.
Collapse
Affiliation(s)
- Agnieszka Ewa Wiącek
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq.3, 20-031 Lublin, Poland
| | - Monika Sujka
- Department of Analysis and Food Quality Assessment, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland
| |
Collapse
|
2
|
Benković M, Laljak I, Valinger D, Jurina T, Sokač Cvetnić T, Gajdoš Kljusurić J, Jurinjak Tušek A. Comparison of the Adsorption and Desorption Dynamics of Biological Molecules on Alginate Hydrogel Microcapsules-The Case of Sugars, Polyphenols, and Proteins. Gels 2024; 10:201. [PMID: 38534619 DOI: 10.3390/gels10030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
The aim of this work was to analyze and compare the adsorption and desorption processes of carbohydrates (glucose as a model molecule), polyphenols (gallic acid as a model molecule), and proteins (bovine serum albumin, BSA as a model molecule) on alginate microcapsules. The adsorption and desorption processes were described by mathematical models (pseudo-first-order, pseudo-second-order, and Weber-Morris intraparticle diffusion model for adsorption, and first-order, Korsmeyer-Peppas, and the Higuchi model for desorption) in order to determine the dominant mechanisms responsible for both processes. By comparing the values of adsorption rate (k2) and initial adsorption rate (h0) based on the pseudo-first-order model, the lowest values were recorded for BSA (k1 = 0.124 ± 0.030 min-1), followed by glucose (k1 = 0.203 ± 0.041 min-1), while the model-obtained values for gallic acid were not considered significant at p < 0.05. For glucose and gallic acid, the limiting step of the adsorption process is the chemical sorption of substances, and the rate of adsorption does not depend on the adsorbate concentration, but depends on the capacity of the hydrogel adsorbent. Based on the desorption rates determined by the Korsmeyer-Peppas model (k), the highest values were recorded for gallic acid (k = 3.66236 ± 0.20776 g beads/mg gallic acid per min), followed by glucose (k = 2.55760 ± 0.16960 g beads/mg glucose per min) and BSA (k = 0.78881 ± 0.11872 g beads/mg BSA per min). The desorption process from alginate hydrogel microcapsules is characterized by the pseudo Fickian diffusion mechanism.
Collapse
Affiliation(s)
- Maja Benković
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Izvorka Laljak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Tea Sokač Cvetnić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
He T, Zhao L, Wang L, Liu L, Liu X, Dhital S, Hu Z, Wang K. Gallic acid forms V-amylose complex structure with starch through hydrophobic interaction. Int J Biol Macromol 2024; 260:129408. [PMID: 38228203 DOI: 10.1016/j.ijbiomac.2024.129408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
This study aimed to investigate the role of amylose and amylopectin in the formation of starch-polyphenol complex and elucidate the interaction mechanisms. Gallic acid (GA) was used to complex with maize starch with various amylose contents. Results showed GA formed V-type crystals with normal maize starch (NMS) and high amylose maize starch (HAMS), while higher relative crystallinity was exhibited in HAMS-GA complexes than NMS counterparts. Molecular structure analysis revealed more amylose in GA-starch complexes than in treated starch counterparts without GA, and this was more apparent in HAMS than NMS, implying amylose is preferred to complex with GA than amylopectin. FTIR detected higher R1047/1022 value in starch-GA complexes than their starch counterparts without GA, suggesting increased short-range ordered structrure of complexes. Typical signatures of hydrophobic interactions were further revealed by isothermal titration calorimetry, indicating the complexation of GA to starch is mainly through hydrophobic bonds. More binding sites were observed for HAMS (72.50) than NMS (11.33), which proves the preferences of amylose to bind with GA. Molecular dynamics simulated the complexation of GA to amylose, and confirmed hydrophobic bond is the main interaction force. These findings would provide guidance for precise design and utilization of starch-polyphenol complexes in functional foods.
Collapse
Affiliation(s)
- Ting He
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Sushil Dhital
- Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
4
|
Liu W, Kang S, Xue J, Chen S, Yang W, Yan B, Liu D. Self-assembled carboxymethyl chitosan/zinc alginate composite film with excellent water resistant and antimicrobial properties for chilled meat preservation. Int J Biol Macromol 2023; 247:125752. [PMID: 37429349 DOI: 10.1016/j.ijbiomac.2023.125752] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
A major way to reduce meat waste is to extend the shelf life of chilled meat with appropriate packaging. However, most of the packaging film cannot keep meat fresh because of its poor antibacterial and water resistance performance. In this paper, a composite film for chilled meat packaging was synthesized by simple self-assembly of zinc ions with chelating carboxyl groups. Introducing zinc ions into the composite system endows excellent water resistance and antibacterial properties to the film, which are demonstrated by the water vapor permeability and Escherichia coli and Staphylococcus aureus antibacterial tests. The as-prepared composite film also showed enhanced mechanical properties due to the formation of chelation bonds between zinc ions and carboxyl groups. Moreover, the chilled meat preservation test demonstrated the as-prepared composite film can significantly extend the shelf life of pork by five days, indicating its outstanding freshness preservation property. This work demonstrated a facile method to synthesize water-resistant and antimicrobial composite film, which can appear as an effective packaging material for chilled meat and offer a new idea to solve its short shelf-life problem.
Collapse
Affiliation(s)
- Wenlong Liu
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Shuai Kang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China; National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Ji Xue
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| |
Collapse
|