1
|
Ding X, Yu S, Zhou J, Tie H, Dai Z, Zeng X. Effect of K 2CO 3 micro-treatment of okara on quality and lipid digestion of fried tofu balls. Food Chem 2025; 475:143217. [PMID: 40009980 DOI: 10.1016/j.foodchem.2025.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
Excessive lipid digestion in fried foods leads to health risks like obesity, cardiovascular diseases. This study investigates the effects of micronized okara (MO) treated with weak alkali (K2CO3) on inhibiting lipid digestion in deep-fried tofu balls, and examines how varying MO proportions affect tofu ball quality and lipid digestion. The addition of 16 % MO significantly improved the texture of tofu balls, enhancing hardness, chewiness, and dietary fiber content. FTIR analysis indicated partial degradation of the dietary fiber fraction in the MO. SEM and XRD analyses revealed that 24 % MO resulted in notable structural changes, including void formation and reduced crystallinity. Simulated in vitro digestion showed that MO-containing samples had increased particle size and decreased free fatty acid release, with a 25.76 % reduction in total fatty acid release during intestinal digestion at 16 % MO addition. This study provides theoretical support for the preparation of fried foods with modifiable lipid digestion.
Collapse
Affiliation(s)
- Xuelu Ding
- School of Liquor and Food Engineering, School of Life Sciences, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Shan Yu
- School of Liquor and Food Engineering, School of Life Sciences, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Juan Zhou
- School of Liquor and Food Engineering, School of Life Sciences, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Huaimao Tie
- School of Liquor and Food Engineering, School of Life Sciences, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Ziru Dai
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou 535011, China; Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, School of Life Sciences, Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China; Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
2
|
Tan L, Tao Y, Chen L, Yang C, Tang X, Ma J, Murong X, Peng X, Liu X, Yu Z. Effects of fermented tofu processing wastewater on growth performance and meat quality of Xianghuang broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:1072-1082. [PMID: 38528677 DOI: 10.1111/jpn.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
This study aimed to investigate the effects of fermented tofu processing wastewater (FTPW) on the growth performance and meat quality of Xianghuang broilers. A total of 160 six-week-old Xianghuang broilers were randomly assigned to control or FTPW groups with eight replicate pens of 10 birds each pen. Broilers received the same corn-soybean diet but different water. Broilers received ordinary water in the control group and 40% (volume: volume) FTPW (the solution has been filtered with four layers of sieve, containing Bacillus 1.52 × 10-7 CFU/mL) in FTPW group. The experiment lasted for 30 days. Results indicated that growth performance was not affected by treatment (p > 0.05). The value of pH45 min and a48 h increased and drip loss72 h and toughness decreased in breast muscle when broilers received FTPW solution compared with the control group (p < 0.05). The pH45 min, a45 min, a48 h value and crude fat concentration of thigh muscle were higher in FTPW group than that in control group (p < 0.05). Compared with control group, fibre area decreased but fibre density increased in thigh muscle when Xianghuang chickens supplemented with FTPW solution (p < 0.05). Supplementation of FTPW solution in drinking water significantly decreased malondialdehyde content in the breast muscle of Xianghuang chickens (p < 0.05). Gene expressions such as carnitine palmitoyltransferase 1A (CPT1) and glycogen synthase of breast muscle were downregulated in experimental group when compared with control group. In conclusion, FTPW supplementation in drinking water could improve meat quality of Xianghuang broilers by regulating pH value, redness and fibre morphology.
Collapse
Affiliation(s)
- LuPeng Tan
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - YiJia Tao
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - Li Chen
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - Can Yang
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - XiaoWu Tang
- College of Bioengineering, Hunan Vocational Technical College of Environment and Biology, Hengyang, China
| | - JianJun Ma
- Institute of Animal Husbandry and Veterinary in Zhuji of Zhejiang, Shaoxing, China
| | - XiangJian Murong
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - XinFei Peng
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - Xu Liu
- College of Life Sciences, Hunan Provincial Key Laboratory of Biological Resources Protection and Utilization in NanYue Mountain Area, Hengyang Normal University, Hengyang, China
| | - ZhengJun Yu
- Hunan Zhongjing Biotechnology Co., Ltd, Changsha, China
| |
Collapse
|
3
|
Yoha KS, Moses JA. 3D Printing Approach to Valorization of Agri-Food Processing Waste Streams. Foods 2023; 12:foods12010212. [PMID: 36613427 PMCID: PMC9818343 DOI: 10.3390/foods12010212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
With increasing evidence of their relevance to resource recovery, waste utilization, zero waste, a circular economy, and sustainability, food-processing waste streams are being viewed as an aspect of both research and commercial interest. Accordingly, different approaches have evolved for their management and utilization. With excellent levels of customization, three-dimensional (3D) printing has found numerous applications in various sectors. The focus of this review article is to explain the state of the art, innovative interventions, and promising features of 3D printing technology for the valorization of agri-food processing waste streams. Based on recent works, this article covers two aspects: the conversion of processing waste streams into edible novel foods or inedible biodegradable materials for food packing and allied applications. However, this application domain cannot be limited to only what is already established, as there are ample prospects for several other application fields intertwining 3D food printing and waste processing. In addition, this article presents the key merits of the technology and emphasizes research needs and directions for future work on this disruptive technology, specific to food-printing applications.
Collapse
|
4
|
Influence of calcium sulfate incorporated with gluconolactone coagulant on the quality of whole soybean flour tofu. Food Chem X 2022; 17:100527. [PMID: 36845466 PMCID: PMC9943844 DOI: 10.1016/j.fochx.2022.100527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
This work proposes a novel method for whole soybean flour tofu preparation by combining calcium sulfate (CS) and glucose-delta-lactone (GDL) coagulation. Importantly, the characteristics of the synthesized gel and the quality were studied. MRI and SEM results showed that the whole soybean flour tofu possessed satisfactory water holding capacity and water content at a CS to GDL ratio of 3:2, significantly improving the cross-linking network gel in tofu and accounting for its similar color to soybeans. Furthermore, GC-IMS analysis showed that the whole soybean flour tofu prepared at a 3:2 ratio had more flavor components (51 types) than commercially available ones (CS or GDL tofu) and exhibited satisfactory results during consumer sensory evaluation. Overall, this method is effective and applicable for the industrial preparation of whole soybean flour tofu.
Collapse
|
5
|
Chen H, Lin B, Zhang R, Gong Z, Wen M, Su W, Zhou J, Zhao L, Wang J. Controllable preparation of chitosan oligosaccharides via a recombinant chitosanase from marine Streptomyces lydicus S1 and its potential application on preservation of pre-packaged tofu. Front Microbiol 2022; 13:1007201. [PMID: 36225376 PMCID: PMC9549211 DOI: 10.3389/fmicb.2022.1007201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Chitosan oligosaccharides (COSs) are widely applied in many areas due to its various biological activities. Controllable preparation of COSs with desired degree of polymerization (DP) via suitable chitosanase is of great value. Herein, a novel glycoside hydrolase (GH) family 46 chitosanase (SlCsn46) from marine Streptomyces lydicus S1 was prepared, characterized and used to controllably produce COSs with different DP. The specific activity of purified recombinant SlCsn46 was 1,008.5 U/mg. The optimal temperature and pH of purified SlCsn46 were 50°C and 6.0, respectively. Metal ions Mn2+ could improve the stability of SlCsn46. Additionally, SlCsn46 can efficiently hydrolyze 2% and 4% colloidal chitosan to prepare COSs with DP 2–4, 2–5, and 2–6 by adjusting the amount of SlCsn46 added. Moreover, COSs with DP 2–4, 2–5, and 2–6 exhibited potential application value for prolonging the shelf-life of pre-packaged Tofu. The water-holding capacity (WHC), sensorial properties, total viable count (TVC), pH and total volatile base nitrogen (TVB-N) of pre-packed tofu incorporated with 4 mg/mL COSs with DP 2–4, 2–5, and 2–6 were better than those of the control during 15 days of storage at 10°C. Thus, the controllable hydrolysis strategy provides an effective method to prepare COSs with desired DP and its potential application on preservation of pre-packed tofu.
Collapse
Affiliation(s)
- Hao Chen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | - Bilian Lin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Rui Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Zhouliang Gong
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Ming Wen
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang, China
| | | | - Liangzhong Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- *Correspondence: Liangzhong Zhao,
| | - Jianrong Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
- Hunan Provincial Key Laboratory of Soybean Products Processing and Safety Control, Shaoyang, China
- Shenzhen Raink Ecology and Environment Co., Ltd., Shenzhen, China
- Jianrong Wang,
| |
Collapse
|