1
|
Murtazina A, Jimenez-Martinez Y, Ruiz Alcala G, Marchal JA, Tarabayeva A, Bitanova E, Rakhimbayev I, McDougall GJ, Bishimbayeva N, Boulaiz H. In Vitro Inhibition of Colon Cancer Stem Cells by Natural Polysaccharides Obtained from Wheat Cell Culture. Polymers (Basel) 2025; 17:1048. [PMID: 40284312 PMCID: PMC12030112 DOI: 10.3390/polym17081048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Natural polysaccharides (PSs) have shown inhibitory effects on differentiated cancer cells (DCCs), but their activity against cancer stem cells (CSCs) remains poorly understood. Here, we report that PSs from wheat cell cultures (WCCPSs) inhibit the proliferation of both DCCs and CSCs derived from HCT-116 colorectal cancer cells. Among them, NA and DC fractions showed the strongest anti-CSC activity. NA, rich in xylose, was effective at lower concentrations, while DC, enriched in xylose and galacturonic acid (GalUA), exhibited higher potency, with a lower IC50 and preferential activity against CSCs at higher doses. WCCPSs reduced β-catenin levels, and some fractions also downregulated Ep-CAM, CD44, and c-Myc. Notably, DC increased caspase-3 without inducing cytochrome C and caspase-8 overexpression, suggesting a mechanism promoting CSC differentiation rather than apoptosis. Correlation analysis linked xylose content to reduced c-Myc expression, and GalUA levels to increased caspase-3. These results suggest that WCCPS bioactivity may be related to their monosaccharide composition. Overall, our findings support the potential of wheat-derived PSs as CSC-targeting agents that suppress self-renewal and promote differentiation, offering a promising approach to reduce tumor aggressiveness and recurrence.
Collapse
Affiliation(s)
- Alima Murtazina
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
| | - Yaiza Jimenez-Martinez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
| | - Gloria Ruiz Alcala
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Anel Tarabayeva
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
| | - Elmira Bitanova
- Department of General Immunology, Faculty of Medicine, Asfendyarov Kazakh National Medical University, Almaty 050012, Kazakhstan; (A.M.); (A.T.); (E.B.)
| | | | - Gordon J. McDougall
- Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;
| | - Nazira Bishimbayeva
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
- Research Institute for Problems of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18016 Granada, Spain; (Y.J.-M.); (G.R.A.); (J.A.M.)
- Research Center “Bioscience Technologies”, Almaty 050057, Kazakhstan
- Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospitals of Granada-University of Granada, 18014 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
2
|
Xu Y, Cao H, He J. Research advances in okra polysaccharides: Green extraction technology, structural features, bioactivity, processing properties and application in foods. Food Res Int 2025; 202:115686. [PMID: 39967146 DOI: 10.1016/j.foodres.2025.115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/13/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025]
Abstract
Okra polysaccharides, extracted from a lowcost plant, has gained abundant research interests recently for exhibiting notable antioxidant, hypoglycaemic, anti-inflammatory, and immunomodulatory capacities, catering for people's continuously increasing demand of safe, natural, and functional food ingredients. Meanwhile, okra polysaccharides are biocompatible materials with excellent processing properties such as water solubility, antimicrobial activity, elasticity, and viscosity. The present study generalizes the multiple biological activities and the extraction methods of okra polysaccharides, and discusses their various applications in food science. This review compares traditional and green extraction methods, reveals their impacts on the primary structures, and also elaborates the functional applications of okra polysaccharides in food industry including serving as emulsifiers, fat replacers, biofilms and microencapsulation materials. It aims to inform further research and discussions on okra polysaccharides. To our view, the development and application of okra polysaccharides should significantly contribute to the advancement of food industry and human health.
Collapse
Affiliation(s)
- Yang Xu
- College of Food Science and Engineering, Ningbo University, Ningbo 315832, PR China
| | - Hongwei Cao
- College of Food Science and Engineering, Ningbo University, Ningbo 315832, PR China
| | - Jun He
- College of Food Science and Engineering, Ningbo University, Ningbo 315832, PR China.
| |
Collapse
|
3
|
Kwok CTK, Ng YF, Chan HTL, Chan SW. An Overview of the Current Scientific Evidence on the Biological Properties of Abelmoschus esculentus (L.) Moench (Okra). Foods 2025; 14:177. [PMID: 39856844 PMCID: PMC11764652 DOI: 10.3390/foods14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/28/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Abelmoschus esculentus (L.) Moench, commonly known as okra or lady's finger, is an annual flowering plant belonging to the Malvaceae family. Okra is a native plant in Africa as well as a traditional medicine in Africa and India for treating different diseases and conditions. Today, okra is widely consumed as a vegetable and is increasingly recognized as a superfood due to its rich nutritional profile and potential pharmacological benefits. Research indicates that okra exhibits a range of biological activities, including antidiabetic, antihyperlipidemic, antifatigue, vasoprotective, hepatoprotective, antitumor, anti-inflammatory, and antimicrobial effects. Despite its promising therapeutic potential, research on the active compounds in okra and evaluating efficacy in clinical settings remains limited. This review aims to consolidate existing scientific knowledge on the biological and pharmacological properties of okra, thereby encouraging further investigation into its health benefits. Ultimately, this could pave the way for the development of functional foods or health supplements that leverage okra as a key ingredient to prevent chronic diseases and enhance overall health outcomes.
Collapse
Affiliation(s)
- Carsten Tsun-Ka Kwok
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong, China; (C.T.-K.K.); (Y.-F.N.); (H.-T.L.C.)
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yam-Fung Ng
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong, China; (C.T.-K.K.); (Y.-F.N.); (H.-T.L.C.)
- University Safety Office, The Chinese University of Hong Kong, Hong Kong, China
| | - Hei-Tung Lydia Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong, China; (C.T.-K.K.); (Y.-F.N.); (H.-T.L.C.)
| | - Shun-Wan Chan
- Department of Food and Health Science, Technological and Higher Education Institute of Hong Kong, Hong Kong, China; (C.T.-K.K.); (Y.-F.N.); (H.-T.L.C.)
| |
Collapse
|
4
|
Son SA, Kim Y, Kim E, Lee KH, Kang WS, Kim JS, Hwang K, Kim S. Physicochemical Properties of Low-Molecular-Weight Homogalacturonan Pectin from Enzyme-Hydrolyzed Red Okra. Foods 2024; 13:3353. [PMID: 39517137 PMCID: PMC11545615 DOI: 10.3390/foods13213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, we focused on reducing the molecular weight of purified red okra pectin using various hydrolytic enzymes and evaluating its physicochemical properties or characterization. The enzyme treatments targeted both the main pectin chain and the side-chain sugars, resulting in a reduction in the molecular weight by approximately 10% (from 647 kDa) to 60% (down to 252 kDa). Both the purified red okra pectin and enzyme-treated pectins exhibited a homogalacturonan (HG)-type backbone. Fourier transform infrared (FT-IR) spectroscopy revealed a decrease in the absorbance peak for the pectin backbone (1200-1000 cm-1) in the low-molecular-weight (LMW) pectin. The most significant decrease was observed at 3300 cm-1 in pectin treated with both RGH+RGAE enzymes, indicating reduced sugar bonds. These results demonstrate the physicochemical changes in LMW red okra pectin following enzyme treatment and confirm its potential applications due to its unique characteristics.
Collapse
Affiliation(s)
- Seon ah Son
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Youngbae Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Eun Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Ki Hoon Lee
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Wan Seok Kang
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Jin Seok Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| | - Kwontack Hwang
- Department of Food Science and Nutrition, Nambu University, Gwangju 62271, Republic of Korea;
| | - Sunoh Kim
- Central R&D Center, B&Tech Co., Ltd., Naju 58205, Republic of Korea; (S.a.S.); (Y.K.); (E.K.); (K.H.L.); (W.S.K.); (J.S.K.)
| |
Collapse
|
5
|
Du H, Olawuyi IF, Said NS, Lee WY. Comparative Analysis of Physicochemical and Functional Properties of Pectin from Extracted Dragon Fruit Waste by Different Techniques. Polymers (Basel) 2024; 16:1097. [PMID: 38675016 PMCID: PMC11054079 DOI: 10.3390/polym16081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Dragon fruit peel, often discarded, is a valuable source of commercial pectin. This study investigates different extraction methods, including cold-water (CW), hot-water (HW), ultrasound (US), and novel enzyme extraction (xylanase: EZX), to extract pectins from dragon fruit peel and compare their characteristics. The pectin yield ranged from 10.93% to 20.22%, with significant variations in physicochemical properties across methods (p < 0.05). FTIR analysis revealed that extraction methods did not alter the primary structural configuration of the pectins. However, molecular weights (Mws) varied significantly, from 0.84 to 1.21 × 103 kDa, and the degree of esterification varied from 46.82% to 51.79% (p < 0.05). Monosaccharide analysis identified both homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) pectic configurations in all pectins, predominantly comprising galacturonic acid (77.21-83.12 %mol) and rhamnose (8.11-9.51 %mol), alongside minor side-chain sugars. These properties significantly influenced pectin functionalities. In the aqueous state, a higher Mw impacted viscosity and emulsification performance, while a lower Mw enhanced antioxidant activities and promoted the prebiotic function of pectin (Lactis brevies growth). This study highlights the impact of extraction methods on dragon fruit peel pectin functionalities and their structure-function relationship, providing valuable insights into predicting dragon fruit peel's potential as a food-grade ingredient in various products.
Collapse
Affiliation(s)
- Huimin Du
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
| | - Won-Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea; (H.D.); (I.F.O.); (N.S.S.)
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Li R, Fan H, Li B, Ge J, Zhang Y, Xu X, Pan S, Liu F. Comparison on emulsifying and emulgelling properties of low methoxyl pectin with varied degree of methoxylation from different de-esterification methods. Int J Biol Macromol 2024; 263:130432. [PMID: 38403224 DOI: 10.1016/j.ijbiomac.2024.130432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Low methoxyl pectin (LMP) with different degree of methoxylation (DM, 40-50 %, 20-30 % and 5-10 %) were prepared from commercially available citrus pectin using high hydrostatic pressure assisted enzymatic (HHP-pectin) and traditional alkaline (A-pectin) de-esterification method. The results showed that both de-esterification methods and DM exhibited LMPs with varied physicochemical, structural, and functional properties. As the DM decreased, LMP showed a decrease in molecular weight (Mw), while an increase in negative charges and rhamnogalacturonan I (RG-I) ratio, accompanied with better emulsion stability, emulsion gel strength and water-holding properties. Relative to A-pectin, HHP-pectin had higher Mw and lower RG-I side chain ratio, contributing to its better thermal stability, apparent viscosity, and emulgelling properties. HHP-pectin with lower DM (5-10 %) showed superior thickening, emulsifying and emulgelling properties, while that with higher DM (40-45 %) had superior thermal stability, which provided alternative for de-esterification and targeted structural modification of pectin.
Collapse
Affiliation(s)
- Ruoxuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Hekai Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Bowen Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Jinjiang Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Yanbing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China.
| |
Collapse
|
7
|
Xu M, Hu J, Li H, Li K, Xu D. Research overview on the genetic mechanism underlying the biosynthesis of polysaccharide in tuber plants. PeerJ 2024; 12:e17052. [PMID: 38464751 PMCID: PMC10924778 DOI: 10.7717/peerj.17052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Tuber plants are of great significance in the world as human food crops. Polysaccharides, important metabolites in tuber plants, also serve as a source of innovative drugs with significant pharmacological effects. These drugs are particularly known for their immunomodulation and antitumor properties. To fully exploit the potential value of tuber plant polysaccharides and establish a synthetic system for their targeted synthesis, it is crucial to dissect their metabolic processes and genetic regulatory mechanisms. In this article, we provide a comprehensive summary of the basic pathways involved in the synthesis of various types of tuber plant polysaccharides. We also outline the key research progress that has been made in this area in recent years. We classify the main types and functions of tuber plant polysaccharides and analyze the biosynthetic processes and genetic regulation mechanisms of key enzymes involved in the metabolic pathways of starch, cellulose, pectin, and fructan in tuber plants. We have identified hexokinase and glycosyltransferase as the key enzymes involved in the polysaccharide synthesis process. By elucidating the synthesis pathway of polysaccharides in tuber plants and understanding the underlying mechanism of action of key enzymes in the metabolic pathway, we can provide a theoretical framework for enhancing the yield of polysaccharides and other metabolites in plant culture cells. This will ultimately lead to increased production efficiency.
Collapse
Affiliation(s)
- Mengwei Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiao Hu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hongwei Li
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Kunqian Li
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi, Guizhou, China
- Guizhou Provincial Demonstration Center of Basic Medical Experimental Teaching, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
8
|
Said NS, Olawuyi IF, Cho HS, Lee WY. Novel edible films fabricated with HG-type pectin extracted from different types of hybrid citrus peels: Effects of pectin composition on film properties. Int J Biol Macromol 2023; 253:127238. [PMID: 37816465 DOI: 10.1016/j.ijbiomac.2023.127238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
This study investigated the valorization of novel HG-type hybrid citrus pectins derived from three cultivars: Setoka (ST), Kanpei (KP), and Shiranui (SH), and their application as packaging materials. The physicochemical properties of these pectins and their corresponding films were evaluated and compared to commercial citrus pectin. Significant variations were observed in pectin yield (18.15-24.12 %) and other physicochemical characteristics, such as degree of esterification (DE), degree of methoxylation (DM), and monosaccharide composition, among the different cultivars. All hybrid citrus pectins were classified as high-methoxy pectin types (66.67-72.89 %) with typical structural configurations like commercial citrus pectin. However, hybrid citrus pectin films exhibited superior physical properties, including higher mechanical strength, flexibility, and lower water solubility than commercial citrus pectin film, while maintaining similar transparency and moisture content. Additionally, the films displayed smooth and uniform surface morphology, confirming their excellent film-forming properties. Correlation analysis revealed that DE positively influenced mechanical properties (r = 1.0). Furthermore, the monosaccharide composition of pectins showed strong relationships (r = 0.8-1.0) with the film's mechanical and barrier properties. These findings highlight the potential of hybrid citrus pectin as potential packaging material, and the knowledge of the structure-function relationship obtained in this study could be useful for the tailored modification of citrus pectin-based packages.
Collapse
Affiliation(s)
- Nurul Saadah Said
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ha-Seong Cho
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Won-Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
9
|
Zhi L, Liu Z, Wu C, Ma X, Hu H, Liu H, Adhikari B, Wang Q, Shi A. Advances in preparation and application of food-grade emulsion gels. Food Chem 2023; 424:136399. [PMID: 37245468 DOI: 10.1016/j.foodchem.2023.136399] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Emulsion gel is a semi-solid or solid material with a three-dimensional net structure produced from emulsion through physical, enzymatic, chemical methods or their combination. Emulsion gels are widely used in food, pharmaceutical and cosmetic industries as carriers of bioactive substances and fat substitutes due to their unique properties. The modification of raw materials, and the application of different processing methods and associated process parameters profoundly affect the ease or difficult of gel formation, microstructure, hardness of the resulting emulsion gels. This paper reviews the important research undertaken in the last decade focusing on classification of emulsion gels, their preparation methods, the influence of processing method and associated process parameters on structure-function of emulsion gels. It also highlights current status of emulsion gels in food, pharmaceutical and medical industries and provides future outlook on research directions requiring to provide theoretical support for innovative applications of emulsion gels, particularly in food industry.
Collapse
Affiliation(s)
- Lanyi Zhi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chao Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne 3083, VIC, Australia
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
10
|
Jiao X, Li F, Zhao J, Wei Y, Zhang L, Yu W, Li Q. The Preparation and Potential Bioactivities of Modified Pectins: A Review. Foods 2023; 12:1016. [PMID: 36900531 PMCID: PMC10001417 DOI: 10.3390/foods12051016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Pectins are complex polysaccharides that are widely found in plant cells and have a variety of bioactivities. However, the high molecular weights (Mw) and complex structures of natural pectins mean that they are difficult for organisms to absorb and utilize, limiting their beneficial effects. The modification of pectins is considered to be an effective method for improving the structural characteristics and promoting the bioactivities of pectins, and even adding new bioactivities to natural pectins. This article reviews the modification methods, including chemical, physical, and enzymatic methods, for natural pectins from the perspective of their basic information, influencing factors, and product identification. Furthermore, the changes caused by modifications to the bioactivities of pectins are elucidated, including their anti-coagulant, anti-oxidant, anti-tumor, immunomodulatory, anti-inflammatory, hypoglycemic, and anti-bacterial activities and the ability to regulate the intestinal environment. Finally, suggestions and perspectives regarding the development of pectin modification are provided.
Collapse
Affiliation(s)
- Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Wenjun Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| |
Collapse
|
11
|
Li H, Wang Y, Zhao P, Guo L, Huang L, Li X, Gao W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr Polym 2023; 313:120746. [PMID: 37182931 DOI: 10.1016/j.carbpol.2023.120746] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Acetylated polysaccharides refer to polysaccharides containing acetyl groups on sugar units. In the past, the acetylation modification of wall polysaccharides has been a hot research topic for scientists. However, in recent years, many studies have reported that acetylation-modified plant, animal, and microbial polysaccharide show great potential in delivery systems. From the latest perspective, this review systematically presents the different sources of naturally acetylated polysaccharides, the regularity of their modification, the chemical preparation of acetylation modifications, the biological activities and functions of acetylated polysaccharides, and the application in the delivery system. In nature, acetylated polysaccharides are extensively distributed in plants, microorganism, and animals. The level of acetylation modification, the distribution of chains, and the locations of acetylation modification sites differ between species. An increasing number of acetylated polysaccharides were prepared in the aqueous medium, which is safe, environment friendly, and low-cost. In addition to being necessary for plant growth and development, acetylated polysaccharides have immunomodulatory, antioxidant, and anticancer properties. The above-mentioned multiple sources, multifunctional and multi-active acetylated polysaccharides, make them an increasingly important part of delivery systems. We conclude by discussing the future directions for research and development and the potential uses for acetylated polysaccharides.
Collapse
|
12
|
Hou F, Yang S, Ma X, Gong Z, Wang Y, Wang W. Characterization of Physicochemical Properties of Oil-in-Water Emulsions Stabilized by Tremella fuciformis Polysaccharides. Foods 2022; 11:foods11193020. [PMID: 36230096 PMCID: PMC9563765 DOI: 10.3390/foods11193020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, emulsions stabilized by Tremella fuciformis polysaccharides (TFP) were prepared and the physiochemical properties were assessed. Results showed that the TFP emulsions illustrated the highest emulsifying activity (EAI) and emulsifying stability (ESI) when the concentration of TFP and oil were 0.8% and 10% (wt%). The higher pH value was in favor of the emulsifying properties, while the addition of NaCl impaired the stability, and the greater the concentration, the lower the EAI and ESI. Besides, the emulsifying and rheological properties and stability analysis were evaluated in comparison with gum arabic, pectin, and carboxymethyl cellulose emulsions. It was discovered that TFP illustrated better storage and freeze-thaw stability, which was proved by the result of zeta-potential and particle size. The rheological measurement revealed that all the emulsions behaved as pseudoplastic fluids, while TFP displayed a higher viscosity. Meanwhile, TFP emulsions tended to form a more stable network structure according to the analysis of the parameters obtained from the Herschel–Bulkley model. FTIR spectra suggested that the O-H bond could be destructed without the formation of new covalent bonds during the emulsion preparation. Therefore, this study would be of great importance for the research of emulsions stabilized by TFP as a natural food emulsifier.
Collapse
Affiliation(s)
- Furong Hou
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shuhui Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaobin Ma
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - Zhiqing Gong
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yansheng Wang
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenliang Wang
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|