1
|
Pillai JR, Wali AF, Shivappa P, Talath S, Attia SM, Nadeem A, Rehman MU. Evaluating the anti-cancer potential and pharmacological in-sights of Physalis angulata Root Extract as a strong candidate for future research. J Genet Eng Biotechnol 2024; 22:100410. [PMID: 39674639 PMCID: PMC11387689 DOI: 10.1016/j.jgeb.2024.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 12/16/2024]
Abstract
The research targeting the prevention of complications through natural constituents, instigated by the cancer has recently drawn much more attention over the globe. The research in this direction also revealed that the use of natural constituents would considered a promising strategy for diminishing the aforementioned disease and its consequences. Because of the easy availability and safe nature, the recent years, natural resources as strong anticancer agents. In this regard, here we introduced the possibility of using the methanolic extract of Physalis angulata root as a strong candidate and implemented the applicability of LC-MS to unveil the presence of various phytocompounds. The anticancer potential exhibited by Physalis angulata root followed by its ability to induce toxicity against the microbial population enhanced the interest in unveiling the phytochemical compounds including Absintholide, Curcumin dimer 1, Mytilin A, Ginsenoside F1, Encecalin , Ganoderic acid TQ, Alnustone, Rhamnetin 3-sophoroside, Gibberellin A14 aldehyde, Thiolutin, Euglobal III and Epomusenin B. The presence of various macro and micronutrients suggested that Physalis angulata is a prominent resource for future research targeting pharmacological research, especially anticancer research.
Collapse
Affiliation(s)
- Jayachithra Ramakrishna Pillai
- Department of Pharmaceutical Chemistry, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates.
| | - Adil Farooq Wali
- Department of Pharmaceutical Chemistry, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates; Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| | - Pooja Shivappa
- Translational Medicinal Research Centre, Department of Biochemistry, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates.
| | - Sabry M Attia
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
2
|
Šelo G, Planinić M, Tišma M, Klarić AM, Bucić-Kojić A. Effects of Fungal Solid-State Fermentation on the Profile of Phenolic Compounds and on the Nutritional Properties of Grape Pomace. Microorganisms 2024; 12:1310. [PMID: 39065079 PMCID: PMC11279339 DOI: 10.3390/microorganisms12071310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Grape pomace (GP) is considered a natural source of bioactive compounds. To improve the extractability of bioactive compounds, in this work, GP was biologically treated for 15 days with the white-rot fungus Trametes versicolor in laboratory jars and a tray bioreactor under solid-state fermentation (SSF) conditions. During SSF, the activity of lignolytic (laccase and manganese peroxidase) and hydrolytic (xylanase, cellulase, β-glucosidase, and invertase) enzymes was measured, with the activities of laccase (2.66 U/gdb in jars and 0.96 U/gdb in the bioreactor) and xylanase (346.04 U/gdb in jars and 200.65 U/gdb in the bioreactor) being the highest. The effect of the complex enzyme system was reflected in the changes in the chemical composition of GP with increasing ash, crude protein, and free fat content: 28%, 10%, and 17% in the laboratory jars, and 29%, 11%, and 7% in the bioreactor, respectively. In addition, the biological treatment improved the extractability of 13 individual phenolic compounds. Therefore, the applied SSF technique represents an effective strategy to improve the profile of phenolic compounds and the nutritional composition of GP, promoting their valorization and opening the door for potential applications in the food industry and other sectors.
Collapse
Affiliation(s)
| | | | | | | | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia; (G.Š.); (M.P.); (M.T.)
| |
Collapse
|
3
|
Uivarasan A, Lukinac J, Jukić M, Šelo G, Peter A, Nicula C, Mihaly Cozmuta A, Mihaly Cozmuta L. Characterization of Polyphenol Composition and Starch and Protein Structure in Brown Rice Flour, Black Rice Flour and Their Mixtures. Foods 2024; 13:1592. [PMID: 38890821 PMCID: PMC11172181 DOI: 10.3390/foods13111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
The study investigates the structural and chemical properties of brown rice flour (WRF), black rice flour (BRF) and their mixtures in ratios of 25%, 50% and 75% to provide reference information for the gluten-free bakery industry. BRF contains higher concentrations of proteins, lipids, total minerals, crude fiber, total polyphenols, proanthocyanidins and flavonoids than WRF. A higher amylose content in BRF than in WRF resulted in flour mixtures with slower starch digestion and a lower glycemic response depending on the BRF ratio added. Differences in the chemical composition of WRF and BRF led to improved composition of the flour mixtures depending on the BRF ratio. The presence of anthocyanidins and phenolic acids in higher concentrations in the BRF resulted in a red-blue color shift within the flour mixtures. The deconvoluted FTIR spectra showed a higher proportion of α-helixes in the amide I band of BRF proteins, indicating their tighter folding. An analysis of the FTIR spectra revealed a more compact starch structure in BRF than in WRF. By processing reflection spectra, nine optically active compound groups were distinguished in rice flour, the proportion in BRF being 83.02% higher than in WRF. Due to co-pigmentation, the bathochromic shift to higher wavelengths was expressed by the proanthocyanins and phenolic acids associated with the wavelengths 380 nm to 590 nm and at 695 nm. Anthocyanins, protein-tannin complexes, methylated anthocyanins and acylated anthocyanins, associated with wavelengths 619, 644 and 668 nm, exhibited a hypsochromic effect by shifting the wavelengths to lower values. This research represents a first step in the development of rice-based products with increased nutritional value and a lower glycemic index.
Collapse
Affiliation(s)
- Alexandra Uivarasan
- Department of Chemistry-Biology, Technical University of Cluj Napoca, 430122 Baia Mare, Romania; (A.U.); (A.P.); (C.N.); (A.M.C.)
| | - Jasmina Lukinac
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.L.); (M.J.); (G.Š.)
| | - Marko Jukić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.L.); (M.J.); (G.Š.)
| | - Gordana Šelo
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (J.L.); (M.J.); (G.Š.)
| | - Anca Peter
- Department of Chemistry-Biology, Technical University of Cluj Napoca, 430122 Baia Mare, Romania; (A.U.); (A.P.); (C.N.); (A.M.C.)
| | - Camelia Nicula
- Department of Chemistry-Biology, Technical University of Cluj Napoca, 430122 Baia Mare, Romania; (A.U.); (A.P.); (C.N.); (A.M.C.)
| | - Anca Mihaly Cozmuta
- Department of Chemistry-Biology, Technical University of Cluj Napoca, 430122 Baia Mare, Romania; (A.U.); (A.P.); (C.N.); (A.M.C.)
| | - Leonard Mihaly Cozmuta
- Department of Chemistry-Biology, Technical University of Cluj Napoca, 430122 Baia Mare, Romania; (A.U.); (A.P.); (C.N.); (A.M.C.)
| |
Collapse
|
4
|
Kachrimanidou V, Papadaki A, Papapostolou H, Alexandri M, Gonou-Zagou Z, Kopsahelis N. Ganoderma lucidum Mycelia Mass and Bioactive Compounds Production through Grape Pomace and Cheese Whey Valorization. Molecules 2023; 28:6331. [PMID: 37687160 PMCID: PMC10489755 DOI: 10.3390/molecules28176331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Numerous compounds obtained from the medicinal mushroom Ganoderma lucidum have evidenced renowned bioactive characteristics. Controlled fermentation to generate fungal mycelia confers several advantages, specifically when the valorization of agro-industrial streams as fermentation feedstocks is included. Submerged fermentation of a newly isolated Greek strain of G. lucidum was performed using conventional synthetic media and, also, grape pomace extract (GPE) and cheese whey permeate (CWP) under static and shaking conditions. Under shaking conditions, maximum biomass with GPE and supplementation with organic nitrogen reached 17.8 g/L. The addition of an elicitor in CWP resulted in a significant improvement in biomass production that exceeded synthetic media. Overall, agitation demonstrated a positive impact on biomass productivity and, therefore, on process optimization. Crude intracellular and extracellular polysaccharides were extracted and evaluated regarding antioxidant activity and polysaccharide and protein content. FTIR analysis confirmed the preliminary chemical characterization of the crude extracts. This study introduces the design of a bioprocessing scenario to utilize food industry by-products as onset feedstocks for fungal bioconversions to obtain potential bioactive molecules within the concept of bioeconomy.
Collapse
Affiliation(s)
- Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Harris Papapostolou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Maria Alexandri
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| | - Zacharoula Gonou-Zagou
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece; (V.K.); (A.P.)
| |
Collapse
|
5
|
Šelo G, Planinić M, Tišma M, Martinović J, Perković G, Bucić-Kojić A. Bioconversion of Grape Pomace with Rhizopus oryzae under Solid-State Conditions: Changes in the Chemical Composition and Profile of Phenolic Compounds. Microorganisms 2023; 11:microorganisms11040956. [PMID: 37110379 PMCID: PMC10143194 DOI: 10.3390/microorganisms11040956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Grape pomace is a sustainable source of bioactive phenolic compounds used in various industries. The recovery of phenolic compounds could be improved by biological pretreatment of grape pomace, as they are released from the lignocellulose structure by the activity of the enzymes produced. The influence of grape pomace pretreatment with Rhizopus oryzae under solid-state conditions (SSF) on the phenolic profile and chemical composition changes was studied. SSF was performed in laboratory jars and in a tray bioreactor for 15 days. Biological pretreatment of grape pomace resulted in an increase in the content of 11 individual phenolic compounds (from 1.1 to 2.5-fold). During SSF, changes in the chemical composition of the grape pomace were observed, including a decrease in ash, protein, and sugar content, and an increase in fat, cellulose, and lignin content. A positive correlation (r > 0.9) was observed between lignolytic enzymes and the hydrolytic enzyme’s xylanase and stilbene content. Finally, after 15 days of SSF, a weight loss of GP of 17.6% was observed. The results indicate that SSF under experimental conditions is a sustainable bioprocess for the recovery of phenolic compounds and contributes to the zero-waste concept by reducing waste.
Collapse
Affiliation(s)
- Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Marina Tišma
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Gabriela Perković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| |
Collapse
|
6
|
Martinović J, Lukinac J, Jukić M, Ambrus R, Planinić M, Šelo G, Klarić AM, Perković G, Bucić-Kojić A. Physicochemical Characterization and Evaluation of Gastrointestinal In Vitro Behavior of Alginate-Based Microbeads with Encapsulated Grape Pomace Extracts. Pharmaceutics 2023; 15:pharmaceutics15030980. [PMID: 36986841 PMCID: PMC10052734 DOI: 10.3390/pharmaceutics15030980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Grape pomace is a byproduct of wineries and a rich source of phenolic compounds that can exert multiple pharmacological effects when consumed and enter the intestine where they can then be absorbed. Phenolic compounds are susceptible to degradation and interaction with other food constituents during digestion, and encapsulation may be a useful technique for protecting phenolic bioactivity and controlling its release. Therefore, the behavior of phenolic-rich grape pomace extracts encapsulated by the ionic gelation method, using a natural coating (sodium alginate, gum arabic, gelatin, and chitosan), was observed during simulated digestion in vitro. The best encapsulation efficiency (69.27%) was obtained with alginate hydrogels. The physicochemical properties of the microbeads were influenced by the coatings used. Scanning electron microscopy showed that drying had the least effect on the surface area of the chitosan-coated microbeads. A structural analysis showed that the structure of the extract changed from crystalline to amorphous after encapsulation. The phenolic compounds were released from the microbeads by Fickian diffusion, which is best described by the Korsmeyer-Peppas model among the four models tested. The obtained results can be used as a predictive tool for the preparation of microbeads containing natural bioactive compounds that could be useful for the development of food supplements.
Collapse
Affiliation(s)
- Josipa Martinović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Jasmina Lukinac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Marko Jukić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Gordana Šelo
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Ana-Marija Klarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Gabriela Perković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Ana Bucić-Kojić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| |
Collapse
|
7
|
Mišković Špoljarić K, Šelo G, Pešut E, Martinović J, Planinić M, Tišma M, Bucić-Kojić A. Antioxidant and antiproliferative potentials of phenolic-rich extracts from biotransformed grape pomace in colorectal Cancer. BMC Complement Med Ther 2023; 23:29. [PMID: 36726100 PMCID: PMC9890866 DOI: 10.1186/s12906-023-03852-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Colorectal carcinoma is one of the most commonly diagnosed malignancies worldwide. Consumption of dietary supplements and nutraceuticals such as phenolic compounds may help combat colorectal carcinoma. The effect of two phenolic-rich extracts prepared from biotransformed grape pomace on the antioxidant properties and antiproliferative activity against two colorectal cancer cell lines (Caco-2 and SW620) were investigated. METHODS A 15-day solid-state fermentation with the white-rot fungi Phanerochaete chrysosporium and Trametes gibbosa was used to biotransform grape pomace. Solid-liquid extraction was then performed to extract bioactive compounds. The extract was analyzed for the determination of phenolic compounds by ultra-high performance liquid chromatography and in vitro assays of biological activities (antioxidant activity, antiproliferative activity, cell cycle analysis). RESULTS The 4 days of solid-state fermentation proved to be the optimal period to obtain the maximum yield of phenolic compounds. The tested extracts showed significant antioxidant and antiproliferative activities. Grape pomace treated with P. chrysosporium and T. gibbosa reduced cancer cell growth by more than 60% at concentrations (solid/liquid ratio) of 1.75 mg/mL and of 2.5 mg/mL, respectively. The cell cycle perturbations induced by the grape pomace extracts resulted in a significant increase in the number of cells in the S (9.8%) and G2/M (6.8%) phases of SW620 exposed to T. gibbosa after 48 hours, while P. chrysosporium increased the percentage of cells in the G1 phase by 7.7%. The effect of grape pomace extracts on Caco-2 was less pronounced. CONCLUSIONS The obtained results suggest the presence of bioactive compounds in biotransformed grape pomace as a residue from winemaking, which could be used to prevent colon cancer.
Collapse
Affiliation(s)
- Katarina Mišković Špoljarić
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Medicine, Josipa Hutlera 4, 31000 Osijek, Croatia
| | - Gordana Šelo
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Ena Pešut
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Medicine, Josipa Hutlera 4, 31000 Osijek, Croatia
| | - Josipa Martinović
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Mirela Planinić
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Marina Tišma
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| | - Ana Bucić-Kojić
- grid.412680.90000 0001 1015 399XJosip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, 31000 Osijek, Croatia
| |
Collapse
|
8
|
Zeko-Pivač A, Bošnjaković A, Planinić M, Parlov Vuković J, Novak P, Jednačak T, Tišma M. Improvement of the Nutraceutical Profile of Brewer's Spent Grain after Treatment with Trametes versicolor. Microorganisms 2022; 10:2295. [PMID: 36422365 PMCID: PMC9693169 DOI: 10.3390/microorganisms10112295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/21/2023] Open
Abstract
Brewer's spent grain (BSG) is an important secondary raw material that provides a readily available natural source of nutraceuticals. It finds its largest application as animal feed and part of the human diet, while the future perspective predicts an application in the production of value-added products. In order to investigate a sustainable BSG treatment method, two BSG samples (BSG1 and BSG2) were evaluated as substrates for the production of hydrolytic (xylanase, β-glucosidase and cellulase) and lignolytic enzymes (laccase, manganese peroxidase and lignin peroxidase) by solid-state fermentation (SSF) with Trametes versicolor while improving BSG nutritional value. The biological treatment was successful for the production of all hydrolytic enzymes and laccase and manganese peroxidase, while it was unsuccessful for the production of lignin peroxidase. Because the two BSGs were chemically different, the Trametes versicolor enzymes were synthesized at different fermentation times and had different activities. Consequently, the chemical composition of the two BSG samples at the end of fermentation was also different. The biological treatment had a positive effect on the increase in protein content, ash content, polyphenolic compounds, and sugars in BSG1. In BSG2, there was a decrease in the content of reducing sugars. Cellulose, hemicellulose, and lignin were degraded in BSG1, whereas only cellulose was degraded in BSG2, and the content of hemicellulose and lignin increased. The fat content decreased in both samples. The safety-related correctness analysis showed that the biologically treated sample did not contain any harmful components and was therefore safe for use in nutritionally enriched animal feed.
Collapse
Affiliation(s)
- Anđela Zeko-Pivač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Anja Bošnjaković
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | - Mirela Planinić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| | | | - Predrag Novak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Tomislav Jednačak
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Marina Tišma
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 18, HR-31 000 Osijek, Croatia
| |
Collapse
|
9
|
Biovalorization of Grape Stalks as Animal Feed by Solid State Fermentation Using White-Rot Fungi. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This work aimed to evaluate the potential of three fungi strains, Lentinula edodes, Pleurotus eryngii, and Pleurotus citrinopileatus, to degrade lignin and enhance the nutritive value of grape stalks (GS). The GS was inoculated with the fungi and incubated under solid-state fermentation at 28 °C and 85% relative humidity for 7, 14, 21, 28, 35, and 42 days, in an incubation chamber. The influence of the treatments was evaluated by analyzing the potential modifications in the chemical composition, in vitro organic matter digestibility (IVOMD) and enzymatic kinetics. An increase (p < 0.001) in the crude protein content was observed in the GS treated with L. edodes and P. citrinopileatus at 42 days of incubation (50 and 75%, respectively). The treatment performed with L. edodes decreased (p < 0.001) lignin content by 52%, and led to higher (p < 0.001) IVOMD values at 42 days of incubation. By contrast, P. eryngii did not affect lignin content and IVOMD. A higher activity of all enzymes was also detected for the treatment with L. edodes. Results indicated that L. edodes has a great potential to enhance the nutritive value of GS as an animal feed, due to its lignin degradation selectivity.
Collapse
|