1
|
Zhang ZH, Wang H, Han X, Huang X, Zeng Q, Li X, Gao X. The effect of different wall materials on the physicochemical properties and antioxidant activity of pomegranate peel polyphenols (PPP) microcapsules. Int J Biol Macromol 2025; 298:139958. [PMID: 39824411 DOI: 10.1016/j.ijbiomac.2025.139958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/01/2025] [Accepted: 01/15/2025] [Indexed: 01/20/2025]
Abstract
Pomegranate peel polyphenols (PPP) are natural compounds known for their various biological activities; however, they are easily degraded by environmental conditions, leading to a reduction in their biological activity and health benefits. Therefore, improving the stability of PPP is a critical question that needs to be addressed. This study aimed to evaluate the efficacy of five common microcapsule wall materials-carboxymethyl cellulose sodium (CMCNa), sodium alginate (SA), gum Arabic (GA), beta-cyclodextrin (β-CD), and hydroxypropyl starch (HPS)-in encapsulating PPP to enhance its stability and antioxidant activity. Remarkable results indicated that β-CD-PPP exhibited the lowest moisture content (3.68 %), the highest thermal decomposition temperature (306.03 °C), and the strongest antioxidant activity (IC50 = 0.26 mg/mL for DPPH, 96.57 % for ABTS). In contrast, CMC-Na-PPP demonstrated the highest encapsulation efficiency (97.94 %) and the largest particle size (9895.63 nm). Moreover, the molecular docking results revealed that all wall materials formed intermolecular interactions with PPP components, with notable differences in binding energies; CMC-Na-PPP had the highest binding energy at -4.38 kcal/mol. These variations are attributed to factors such as molecular weight, free active groups, and spatial conformation of the wall materials. Therefore, in order to fully utilize the biological activity of PPP in food processing, microcapsules formed with β-CD as the wall material are more valuable compared to those formed with other wall materials.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huiyue Wang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyang Han
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Huang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Lab Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Xiaolan Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Fan Z, Shahid A, Su K, Zhao A, Zhang B, Xu J. Comprehensive analysis of the effects of fresh Spirulina microcapsules on protein cross-linking and structural changes in wheat noodles. Food Chem 2025; 482:144034. [PMID: 40184750 DOI: 10.1016/j.foodchem.2025.144034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/21/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
Fresh spirulina microcapsules (SP-MICs) are a viable strategy to prolong the preservation of fresh spirulina. This study aims to investigate the effects of SP-MICs on noodle quality, focusing on physicochemical properties and wheat gluten structures. Compared to the control group, the addition of 3 % SP-MICs significantly improved the sensory and textural properties of the noodles. Chewiness and hardness increased by 14.40 % and 32.36 %, respectively. In terms of glutenin subunits, HMS and B/C-LMS contents increased by 6.10 % and 5.39 %, respectively. Additionally, the gliadin-to-glutenin ratio reached its lowest at 1.19. Surface hydrophobicity decreased by 6.41 %, disulfide bond content increased by 31.60 %, and non-covalent interactions (hydrogen bond and hydrophobic interactions) were enhanced. The secondary structure of gluten protein became more ordered, with a 6.86 % increase in β-sheet content and a 1.10 % decrease in random coil content. SEM and CLSM results showed that 3 % SP-MICs significantly reinforced the gluten network and protein-starch cross-linking.
Collapse
Affiliation(s)
- Zhihao Fan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ayesha Shahid
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Kerui Su
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Anqi Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.; National Key Laboratory of Biobased Transportation Fuel Technology, Zhengzhou 450001, China
| | - Beixiao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China..
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.; National Key Laboratory of Biobased Transportation Fuel Technology, Zhengzhou 450001, China..
| |
Collapse
|
3
|
Zhang ZH, Chen J, Huang X, Aadil RM, Li B, Gao X. Natural pigments in the food industry: Enhancing stability, nutritional benefits, and gut microbiome health. Food Chem 2024; 460:140514. [PMID: 39047471 DOI: 10.1016/j.foodchem.2024.140514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Natural pigments are increasingly favored in the food industry for their vibrant colors, fewer side effects and potential health benefits compared to synthetic pigments. However, their application in food industry is hindered by their instability under harsh environmental conditions. This review evaluates current strategies aimed at enhancing the stability and bioactivity of natural pigments. Advanced physicochemical methods have shown promise in enhancing the stability of natural pigments, enabling their incorporation into food products to enhance sensory attributes, texture, and bioactive properties. Moreover, recent studies demonstrated that most natural pigments offer health benefits. Importantly, they have been found to positively influence gut microbiota, in particular their regulation of the beneficial and harmful flora of the gut microbiome, the reduction of ecological dysbiosis through changes in the composition of the gut microbiome, and the alleviation of systemic inflammation caused by a high-fat diet in mice, suggesting a beneficial role in dietary interventions.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Jialin Chen
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Huang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, Guangdong, 510641, China.
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
4
|
Si X, Yuan Z, Li H, Zhu Y, Zhou Y, Liu J, Wu Z. Microencapsulated granaticins from Streptomyces vilmorinianum YP1: Optimization, physiochemical characterization and storage stability. Food Chem X 2024; 23:101548. [PMID: 38974200 PMCID: PMC11225699 DOI: 10.1016/j.fochx.2024.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Granaticins are natural pigments derived from microorganisms with promising bioactivity. However, their practical applications have been restricted due to inherent instability. To improve the stability of granaticins from the novel strain Streptomyces vilmorinianum YP1, microcapsules were prepared using gum Arabic (GA) by a freeze-drying method. The optimal parameters for microencapsulation were determined using response surface methodology. Under the optimal conditions (GA 9.2% (v/v), a wall/-core ratio 4.8 (w/w), encapsulating temperature 29 °C), the maximum encapsulation efficiency achieved was 93.64%. The microcapsules were irregular single crystals with an average particle size of 206.37 ± 2.51 nm. Stability testing indicated improved stability of the microencapsulated granaticins. Notably, granaticnic B retention increased by 17.0% and 6.6% after exposure to sunlight and storage at 4 °C, respectively. These finding suggest that GA as a well material significantly enhances the stability of granaticins from S. vilmorinianum YP1, facilitating their potential applications.
Collapse
Affiliation(s)
- Xuechen Si
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zuoyun Yuan
- COFCO Nutrition and Health Research Institute, Beijing 102200, China
| | - Huilin Li
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yunping Zhu
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China
| | - Yawen Zhou
- School of light industry science and engineering, Beijing Technology and Business university, China
| | - Jia Liu
- Internal Trade Food Science Research Institue Co., Ltd, Beijing, 102200, China
| | - Zhichao Wu
- Internal Trade Food Science Research Institue Co., Ltd, Beijing, 102200, China
| |
Collapse
|
5
|
Zhang ZH, Li X, Ma A, Gao X, Zhu S, Li B. Characteristics of pomegranate (Punica granatum L.) peel polyphenols encapsulated with whey protein isolate and β-cyclodextrin by spray-drying. Int J Biol Macromol 2024; 278:135279. [PMID: 39256130 DOI: 10.1016/j.ijbiomac.2024.135279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Pomegranate peel polyphenols (PPPs) are recognized as promising food additives due to their diverse bioactivities; however, their application is limited by poor stability. To address this critical issue, three types of PPPs microcapsules were prepared using β-cyclodextrin (CD), whey protein isolate (WPI), and a composite material of CD-WPI through ultrasound treatment (US). Results revealed that ultrasound treatment can enhance the PPPs-wall material interaction, as evidenced by MD simulations. The encapsulation efficiency of CD-WPI-PPPs was 93.73 %, which was significantly higher than that of CD-PPPs and WPI-PPPs (p < 0.05). The degradation rate constant of CD-WPI-PPPs was reduced by 95.83 %, and its t1/2 was extended by 23-fold compared to that of unencapsulated PPPs. Furthermore, CD-WPI-PPPs exhibited greater DPPH scavenging activity and inhibited polyphenol release during oral and gastric digestion while promoting release during intestinal digestion. These outcomes were attributed to enhanced integrity and interactions between PPPs and composite materials in the microcapsules formed through ultrasound treatment, as supported by SEM images and FT-IR spectra. Consequently, the application of US in the preparation of PPPs microcapsules presents a promising strategy for developing natural nutrient additives for food applications, thereby enhancing the functional properties of food products.
Collapse
Affiliation(s)
- Zhi-Hong Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510641, China; School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xiaolan Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Aijuan Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siming Zhu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510641, China
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
6
|
Wen C, Lin X, Tang J, Fan M, Liu G, Zhang J, Xu X. New perspective on protein-based microcapsules as delivery vehicles for sensitive substances: A review. Int J Biol Macromol 2024; 270:132449. [PMID: 38777020 DOI: 10.1016/j.ijbiomac.2024.132449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Sensitive substances have attracted wide attention due to their rich functional activities, such as antibiosis activities, antioxidant activities and prevent disease, etc. However, the low stability of sensitive substances limits their bioavailability and functional activities. Protein-based microcapsules can encapsulate sensitive substances to improve their adverse properties due to their good stability, strong emulsifying ability and wide source. Therefore, it is necessary to fully elaborate and summarize protein-based microcapsules to maximize their potential benefits in nutritional interventions. The focus of this review is to highlight the classification of protein-based microcapsules. In addition, the principles, advantages and disadvantages of preparation methods for protein-based microcapsules are summarized. Some novel preparation methods for protein-based microcapsules are also emphasized. Moreover, the mechanism of protein-based microcapsules that release sensitive substances in vitro is elucidated and summarized. Furthermore, the applications of protein-based microcapsules are outlined. Protein-based microcapsules can effectively encapsulate sensitive substances, which improve their bioavailability, and provide protective effects during storage and gastrointestinal digestion. In addition, microcapsules can improve the sensory quality of food and enhance its stability. The performance of protein-based microcapsules for delivering sensitive substances is influenced by factors such as protein type, the ratio between protein ratio and the other wall material, the preparation process, etc. Future research should focus on the new composite protein-based microcapsule delivery system, which can be applied to in vivo research and have synergistic effects and precise nutritional functions. In summary, protein-based microcapsules have broader research prospects in the functional foods and nutrition field.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Xinying Lin
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jialuo Tang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Meidi Fan
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China.
| |
Collapse
|
7
|
Zhang Z, Zhang Z, Li X, Zhou S, Liu M, Li S, Liu H, Gao H, Zhao A, Zhang Y, Huang L, Sun J. Preparation and Characterization of Prickly Ash Peel Oleoresin Microcapsules and Flavor Retention Analysis. Foods 2024; 13:1726. [PMID: 38890954 PMCID: PMC11171865 DOI: 10.3390/foods13111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Prickly ash peel oleoresin (PPO) is a highly concentrated oil of Prickly ash essential oil and has a stronger aroma. However, its low water solubility, high volatility, difficulty in transport and storage, and decomposition by light, heat, and oxygen limit its wider application. To solve this problem, this study used freeze-drying or spray-drying, with soybean protein isolate (SPI) or gum Arabic (GA), combined with aqueous maltodextrin (MD) as the encapsulating agents to prepare four types of PPO microcapsules (POMs). Spray-dried microcapsules with GA as the encapsulating agent achieved a high encapsulation efficiency (EE) of 92.31 ± 0.31%, improved the thermal stability of the PPO, and had spherical morphology. (Headspace solid-phase microextraction/gas chromatography-mass spectrometry) HS-SPME/GC-MS detected 41 volatile compounds in PPO; of these, linalool, β-myrcene, sabinene, and D-limonene were identified as key flavor components. Principal component analysis (PCA) effectively distinguished the significant differences in flavor between PPO, spray-dried SPI/MD microcapsules (SS), and spray-dried GA/MD microcapsules (SG). During 15 days of air-exposure, the loss of flavor from SG (54.62 ± 0.54%) was significantly lower than PPO (79.45 ± 1.45%) and SS (57.55 ± 0.36%). During the air-exposure period, SG consistently had the highest antioxidant capacity, making it desirable for PPO packaging, and expanding its potential applications within the food industry.
Collapse
Affiliation(s)
- Zhiran Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Ziyan Zhang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Xichao Li
- National Engineering Research Centre for Intelligent Electrical Vehicle Power System (Qingdao), College of Mechanical & Electronic Engineering, Qingdao University, Qingdao 266071, China;
| | - Sen Zhou
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Mengkai Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Shengxin Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - He Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Hui Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Aiyun Zhao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| | - Yongchang Zhang
- LIHOOS (Qingdao) Food Co., Ltd., Qingdao 266000, China; (Y.Z.); (L.H.)
| | - Liu Huang
- LIHOOS (Qingdao) Food Co., Ltd., Qingdao 266000, China; (Y.Z.); (L.H.)
| | - Jie Sun
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (Z.Z.); (Z.Z.); (S.Z.); (M.L.); (S.L.); (H.L.); (A.Z.)
| |
Collapse
|
8
|
Vu AT, Kha TC, Phan HT. Encapsulation of Bioactive Compounds from Germinated Mung Bean by Freeze-Drying, Release Kinetics, and Storage Stability. Foods 2023; 13:100. [PMID: 38201128 PMCID: PMC10778347 DOI: 10.3390/foods13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
This research explores the application of germinated mung bean extract, rich in GABA (Gamma-aminobutyric acid) and polyphenols, in enhancing human health. Recognizing the instability of these bioactive compounds in environmental conditions, encapsulation emerges as a pivotal technique to broaden their applications in food and pharmaceuticals. Utilizing response surface methodology and Box-Behnken design, the freeze-drying formulation for encapsulating the aqueous extract was optimized. Second-order polynomial models were developed, exhibiting statistical adequacy in predicting key variables such as encapsulation efficiency for GABA (EE-GABA) and total polyphenol content (EE-TPC), as well as encapsulation yield for GABA (EY-GABA) and total polyphenol content (EY-TPC). The established optimal formulation was validated, resulting in predicted values for EE-GABA, EE-TPC, EY-GABA, and EY-TPC. The release kinetics of encapsulated particles were investigated, highlighting the suitability of the Korsmeyer-Peppas and Higuchi models. Assessing the stability of the encapsulated powder under varying temperatures and humidities revealed degradation rates, half-life, and activation energy, with moisture equilibrium established at 4.70%, indicative of long-term stability. In conclusion, the encapsulated germinated mung bean powder demonstrates high stability, making it a promising candidate for integration into food products and functional ingredients.
Collapse
Affiliation(s)
| | - Tuyen Chan Kha
- Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Vietnam; (A.T.V.); (H.T.P.)
| | | |
Collapse
|
9
|
Nascimento APS, Carvalho AJDBA, Lima MDS, Barros SL, Ribeiro S, Pasqualli M, Lisboa HM, Barros AN. Enhancing Antioxidant Retention through Varied Wall Material Combinations in Grape Spray Drying and Storage. Antioxidants (Basel) 2023; 12:1745. [PMID: 37760048 PMCID: PMC10525094 DOI: 10.3390/antiox12091745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The encapsulation of bioactive compounds, which spans phytochemicals, vitamins, antioxidants, and other precious substances, has risen to prominence as a crucial area of interest spanning various domains, including food, pharmaceuticals, and cosmetics. This investigation delved into the efficacy of distinct wall materials-whey protein isolate, high methoxy pectin, and gum arabic-when employed individually or in combination to encapsulate and preserve phenolic compounds and antioxidants during storage. The encapsulation process involved spray-drying bioactive compounds extracted from grapes. Over a span of 120 days, the stability of these encapsulated compounds was meticulously evaluated, encompassing assessments via different antioxidant capacity assays, phenolic content analyses, and high-performance liquid chromatography measurements. The modeling of retention kinetics during storage facilitated the comprehension of the release mechanisms. Notably, the findings underscore the pivotal role of wall materials in preserving these bioactive compounds, with each material or combination of materials exhibiting varying degrees of protective capacity. Remarkably, the synergistic blend of whey protein, pectin, and gum arabic showcased the utmost retention of bioactive compounds over this study's period. The amassed data distinctly show that an amalgamation of wall materials can indeed considerably enhance the stability of encapsulated bioactive compounds, presenting promising applications within the realms of both the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Amanda Priscila Silva Nascimento
- Post-Graduate Program Process Engineering, Federal University of Campina Grande, Av. Aprigio Veloso, 882, Campina Grande 58400-900, PB, Brazil; (A.P.S.N.); (S.R.); (M.P.)
| | - Ana Júlia de Brito Araújo Carvalho
- Department of Food Technology, Federal Institute of Sertão Pernambucano, CEP, Petrolina 56314-522, PE, Brazil; (A.J.d.B.A.C.); (M.d.S.L.)
| | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, CEP, Petrolina 56314-522, PE, Brazil; (A.J.d.B.A.C.); (M.d.S.L.)
| | - Samela Leal Barros
- Department of Food Science and Engineering, Federal University of Ceára, Av. da Universidade, 2853—Benfica, CEP, Fortaleza 60020-181, CE, Brazil;
| | - Samara Ribeiro
- Post-Graduate Program Process Engineering, Federal University of Campina Grande, Av. Aprigio Veloso, 882, Campina Grande 58400-900, PB, Brazil; (A.P.S.N.); (S.R.); (M.P.)
| | - Matheus Pasqualli
- Post-Graduate Program Process Engineering, Federal University of Campina Grande, Av. Aprigio Veloso, 882, Campina Grande 58400-900, PB, Brazil; (A.P.S.N.); (S.R.); (M.P.)
| | - Hugo M. Lisboa
- Post-Graduate Program Process Engineering, Federal University of Campina Grande, Av. Aprigio Veloso, 882, Campina Grande 58400-900, PB, Brazil; (A.P.S.N.); (S.R.); (M.P.)
| | - Ana Novo Barros
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|