1
|
Li Y, Zhao W, Wang Y, Xie Y, Li J, He J, Wang C, De Souza C, Zhang L, Lin K. Development of low-allergenicity algal oil microcapsules with high encapsulation efficiency using extensively hydrolyzed whey protein. Int J Biol Macromol 2025; 303:140540. [PMID: 39894133 DOI: 10.1016/j.ijbiomac.2025.140540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Algal oil is rich in docosahexaenoic acid, which is beneficial for infant development, but its susceptibility to oxidation necessitates microencapsulation. This study investigated the effects of incorporating varying ratios of octenyl succinic anhydride-modified starch (OSA-MS) into a base wall system comprising extensively hydrolyzed whey protein (eWPH) and maltodextrin (MD) to produce algal oil microcapsules with reduced allergenicity and high nutritional value, replacing whey protein isolate (WPI). The residual antigenicity of α-lactalbumin and β-lactoglobulin in eWPH was 3.60 % and 3.88 %, respectively. The addition of OSA-MS significantly enhanced emulsion stability in the eWPH/MD system for algal oil encapsulation. The highest microencapsulation efficiency (98.35 %) was achieved with 21 % OSA-MS, showing no significant difference from that of WPI/MD-based microcapsules. Furthermore, microcapsules prepared with eWPH/MD/OSA-MS (21 %) exhibited smooth surfaces, good dispersibility, and high solubility (91.79 %). These microcapsules also demonstrated superior oxidative stability after 18 days of storage at 60 °C compared to those with other OSA-MS ratios. Overall, incorporating OSA-MS into the eWPH/MD wall system achieved encapsulation performance comparable to WPI/MD, thereby broadening the application potential of eWPH in microencapsulation.
Collapse
Affiliation(s)
- Yanbin Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Weixue Zhao
- Meitek Technology (Qingdao) Co., Ltd, Qingdao 266400, China
| | - Yongchao Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yumeng Xie
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiadong Li
- Innochina Biotech Co., Ltd, Shanghai 201400, China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Caiyun Wang
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Cristabelle De Souza
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Lanwei Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Kai Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Wang X, Cao Z, Su J, Ge X, Zhou Z. Oral barriers to food-derived active peptides and nano-delivery strategies. J Food Sci 2025; 90:e17672. [PMID: 39828408 DOI: 10.1111/1750-3841.17672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/04/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
Food-derived bioactive peptides are a class of peptides from natural protein. It may have biological effects on the human body and play a significant role in protecting human physiological health and regulating physiological metabolism, such as lowering blood pressure, lowering cholesterol, antioxidant, antibacterial, regulating immune activity, and so on. However, most of the natural food-derived functional peptides need to overcome a variety of barriers in the body to enter the blood circulation system and target to specific tissues to generate physiological activity. During this process, the bioavailability of the functional peptides will be reduced. The nano-delivery system can offer the feasibility to overcome these obstacles and improve the stability and bioavailability of food-derived active peptides by nanoencapsulation. This work summarizes the application of food-derived bioactive peptides and the obstacles during the delivery pathway in vivo. Moreover, the different nano-delivery systems used for bioactive peptides and their application were summarized, which could provide ideas for oral delivery of food-derived bioactive peptides.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Zhaoxin Cao
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jingyi Su
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhiyong Zhou
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, P. R. China
| |
Collapse
|
3
|
Li C, Zhou X, Wang J, Ye H, Sun C, Alhomrani M, Alamri AS, Guo N. Preparation of sanguinarine/glabridin loaded antifungal double-layer nanoemulsion edible coating using arabic gum/WPI for forest frog's oviduct oil preservation. Int J Biol Macromol 2024; 278:134826. [PMID: 39154684 DOI: 10.1016/j.ijbiomac.2024.134826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Forest frog's oviduct oil (FFOO) is highly susceptible to microbial spoilage during storage, which causes serious safety concerns and economic losses. However, little information is available regarding the preservation of it up to now. The aim of this research is to understand the dominant microbial community of FFOO spoilage, and based on this, develop a kind of edible nanoemulsion coating for preserving FFOO. Microbial metagenomic analysis indicated that the Aspergillus genus increased significantly during storage. In the present study, gum arabic and whey protein isolate were chosen as the coating matrix, the natural compounds sanguinarine and glabridin were selected as antimicrobial agents to prepare double-layer nanoemulsion edible coating. When the ratio of sanguinarine and glabridin in the nanoemulsion was 1:3, it exhibited strongest storage stability and antifungal activity. The mycelial inhibition rate of 1:3 nanoemulsion against dominant microbial community (Aspergillus niger and Aspergillus glaucus) reached 88.89 ± 1.37 % and 89.68 ± 1.37 %, respectively. The experimental results indicated that the edible nanoemulsion coating not only had outstanding antifungal activity, but also had excellent fresh-keeping effect on FFOO. This nanoemulsion coating could be a promising and potential candidate for food preservation.
Collapse
Affiliation(s)
- Chenfei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xiran Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiaxi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunyan Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Abdulhakeem S Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Na Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Korin A, Gouda MM, Youssef M, Elsharkawy E, Albahi A, Zhan F, Sobhy R, Li B. Whey Protein Sodium-Caseinate as a Deliverable Vector for EGCG: In Vitro Optimization of Its Bioaccessibility, Bioavailability, and Bioactivity Mode of Actions. Molecules 2024; 29:2588. [PMID: 38893466 PMCID: PMC11174060 DOI: 10.3390/molecules29112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Epigallocatechin gallate (EGCG), the principal catechin in green tea, exhibits diverse therapeutic properties. However, its clinical efficacy is hindered by poor stability and low bioavailability. This study investigated solid particle-in-oil-in-water (S/O/W) emulsions stabilized by whey protein isolate (WPI) and sodium caseinate (NaCas) as carriers to enhance the bioavailability and intestinal absorption of EGCG. Molecular docking revealed binding interactions between EGCG and these macromolecules. The WPI- and NaCas-stabilized emulsions exhibited high encapsulation efficiencies (>80%) and significantly enhanced the bioaccessibility of EGCG by 64% compared to free EGCG after simulated gastrointestinal digestion. Notably, the NaCas emulsion facilitated higher intestinal permeability of EGCG across Caco-2 monolayers, attributed to the strong intermolecular interactions between caseins and EGCG. Furthermore, the emulsions protected Caco-2 cells against oxidative stress by suppressing intracellular reactive oxygen species generation. These findings demonstrate the potential of WPI- and NaCas-stabilized emulsions as effective delivery systems to improve the bioavailability, stability, and bioactivity of polyphenols like EGCG, enabling their applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ali Korin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Mostafa M. Gouda
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mahmoud Youssef
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Eman Elsharkawy
- Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Amgad Albahi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National Food Research Centre, Ministry of Agriculture and Natural Resources, Khartoum 113, Sudan
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Remah Sobhy
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Bai L, Geng S, Zhou Y, Ma H, Liu B. Ultrasound-assisted fabrication and stability evaluation of okra seed protein stabilized nanoemulsion. ULTRASONICS SONOCHEMISTRY 2024; 104:106807. [PMID: 38367307 PMCID: PMC10883816 DOI: 10.1016/j.ultsonch.2024.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
The structure and functional properties of okra seed protein (OSP) were characterized, the ultrasonic homogenization process of OSP nano-emulsion was optimized by response surface methodology (RSM), and its stability was also evaluated in this study. The results suggested that OSP was a high-quality plant protein, rich in glutamic acid. The molecular weight of its main subunits distributed in the range of 10-55 kDa, and some subunits were connected by disulfide bonds. Although the water and oil holding capacities of OSP were inferior to those of soy protein isolate (SPI), its emulsifying ability was superior to that of SPI. And the OSP concentration, ultrasonic time and ultrasonic power had obvious effects on the droplet size of nanoemulsion. The optimum process of OSP emulsion was determined as follows: OSP concentration 2.4 %, ultrasonic power 600 W, ultrasonic time 340 s. Under these conditions, the median droplet size of the nanoemulsion was 192.03 ± 3.48 nm, close to the predicted value (191.195 nm). And the obtained nano-emulsion exhibited high stability to the changes of pH, temperature and ionic strength in the environment. Our results can provide reference for the application of OSP, and promote the development of plant protein-based nanoemulsions.
Collapse
Affiliation(s)
- Lu Bai
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Sheng Geng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yingxuan Zhou
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
6
|
Hou NT, Chen BH. Preparation of Nanoemulsions with Low-Molecular-Weight Collagen Peptides from Sturgeon Fish Skin and Evaluation of Anti-Diabetic and Wound-Healing Effects in Mice. Pharmaceutics 2023; 15:2304. [PMID: 37765272 PMCID: PMC10536673 DOI: 10.3390/pharmaceutics15092304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
This study aims to isolate collagen peptides from waste sturgeon fish skin, and prepare nanoemulsions for studying their anti-diabetic and wound-healing effects in mice. Collagen peptides were extracted and purified by acetic acid with sonication, followed by two-stage hydrolysis with 0.1% pepsin and 5% flavourzyme, and ultrafiltration with 500 Da molecular weight (MW) cut-off dialysis membrane. Animal experiments were performed with collagen peptides obtained by pepsin hydrolysis (37 kDa) and pepsin plus flavourzyme hydrolysis (728 Da) as well as their nanoemulsions prepared at two different doses (100 and 300 mg/kg/day). The mean particle size of low-MW and low-dose nanoemulsion, low-MW and high-dose nanoemulsion, high-MW and low-dose nanoemulsion and high-MW and high-dose nanoemulsion was, respectively, 16.9, 15.3, 28.1 and 24.2 nm, the polydispersity index was 0.198, 0.215, 0.231 and 0.222 and zeta potential was -61.2, -63.0, -41.4 and -42.7 mV. These nanoemulsions were highly stable over a 90-day storage period (4 °C and 25 °C) and heating at 40-100 °C (0.5-2 h). Experiments in mice revealed that the low-MW and high-dose nanoemulsion was the most effective in decreasing fasting blood glucose (46.75%) and increasing wound-healing area (95.53%). Collectively, the sturgeon fish skin collagen peptide-based nanoemulsion is promising for development into a health food or wound-healing drug.
Collapse
Affiliation(s)
- Nian-Ting Hou
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
7
|
Bertucci JI, Salese L, Liggieri CS, Garrote GL, Bruno MA. Preparation of whey protein hydrolysates with ACE‐inhibitory activity using cysteine peptidases from
Bromelia hieronymi
Mez. (Bromeliaceae). INT J DAIRY TECHNOL 2023. [DOI: 10.1111/1471-0307.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo Instituto Español de Oceanografía (IEO‐CSIC) Subida a Radio Faro, 50 Vigo Pontevedra 36390 España
| | - Lucía Salese
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Facultad de Ciencias Exactas Universidad Nacional de La Plata 47 and 115 La Plata Buenos Aires 1900 Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Godoy Cruz 2290 C1425FQB CABA Argentina
| | - Constanza Silvina Liggieri
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Facultad de Ciencias Exactas Universidad Nacional de La Plata 47 and 115 La Plata Buenos Aires 1900 Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA) 526 and 10 La Plata Buenos Aires 1900 Argentina
| | - Graciela Liliana Garrote
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Godoy Cruz 2290 C1425FQB CABA Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) 47 and 116 La Plata Buenos Aires 1900 Argentina
| | - Mariela Anahí Bruno
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Facultad de Ciencias Exactas Universidad Nacional de La Plata 47 and 115 La Plata Buenos Aires 1900 Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Godoy Cruz 2290 C1425FQB CABA Argentina
| |
Collapse
|