1
|
Rebaza-Cardenas T, Montes-Villanueva ND, Fernández M, Delgado S, Ruas-Madiedo P. Microbiological and physical-chemical characteristics of the Peruvian fermented beverage "Chicha de siete semillas": Towards the selection of strains with acidifying properties. Int J Food Microbiol 2023; 406:110353. [PMID: 37591132 DOI: 10.1016/j.ijfoodmicro.2023.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/29/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Traditional fermented beverages have been consumed worldwide for centuries. Such is the case of "Chicha de siete semillas" which is originally from the province of Huanta, in Ayacucho, Peru. In this work we have analyzed the chemical composition and bacterial diversity of products manufactured from six producers, who have used different combinations of cereals, pseudocereals, legumes and aromatic herbs, although maize was present in all of them. The fermented beverages had a low pH, mainly due to the production of lactic acid, whereas ethanol was, in general, present in low concentrations. Most of the products were rich in GABA, the content of biogenic amines being very low, as corresponds to a product with a short maturation time (less than 4 days). A metataxonomic analysis revealed that Streptococcaceae and Leuconostocaceae families were dominant in the majority of the beverages, Streptococcus spp. and Leuconostoc spp. being the representative genera, respectively. The result was corroborated by culture-dependent techniques, since these were the most abundant genera isolated and identified in all samples, with Streptococcus macedonicus and Leuconostoc lactis as representative species. In lower proportions other isolates were identified as Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Furfurilactobacillus rossiae, Weissella confusa and Enterococcus faecium. The genetic profile of 26 S. macedonicus isolates was determined by RAPD-PCR and REP-PCR, showing five different patterns distinguishable with the first technique. One representative strain from each genetic pattern was further characterized and used to ferment a maize-based matrix (with saccharose) in order to know their technological potential. All strains were able to ferment the beverage at 30 °C in a short time (about 6 h) reaching a pH below 4.5 and they remained viable after 24 h; the main organic acid contributing to the pH decrease was lactic acid. Therefore, S. macedonicus is a good candidate for being part of a putative starter culture, since it is a species well adapted to this cereal-based food niche.
Collapse
Affiliation(s)
- Teresa Rebaza-Cardenas
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain; Facultad de Ingeniería Agraria, Universidad Católica Sedes Sapientiae (UCSS), Lima, Peru
| | | | - María Fernández
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Susana Delgado
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Instituto de Productos Lácteos de Asturias (IPLA), CSIC, Paseo Río Linares s/n, 33300 Villaviciosa, Asturias, Spain.
| |
Collapse
|
2
|
Guzmán-Armenteros TM, Ruales J, Villacís-Chiriboga J, Guerra LS. Experimental Prototype of Electromagnetic Emissions for Biotechnological Research: Monitoring Cocoa Bean Fermentation Parameters. Foods 2023; 12:2539. [PMID: 37444278 DOI: 10.3390/foods12132539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
A Helmholtz-type electromagnetic emission device, which uses an oscillating magnetic field (OMF), with potential applications in biotechnological research, was built and validated. The coils were connected to an alternating current (AC) generator to generate a 0.5 to 110 mT field at their center. OMF measurements were performed with a Hall effect sensor with a digital signal connection (Arduino nano) and data output to a PC using LabVIEW v2017SP1 software. The fermentation process of the cocoa bean variety CCN 51, exposed to four levels of OMF density for 60 min (0, 5, 40, and 80 mT/60 min), was analyzed. Different variables of the grain fermentation process were evaluated over six days. The ANOVA test probed the device's linearity, accuracy, precision, repeatability, reliability, and robustness. Moreover, CCN 51 cocoa beans' EMF-exposure effect was evaluated under different OMF densities for 60 min. The results show the validity of the equipment under working conditions and the impact of EMF (electromagnetic fields) on the yield, deformation, and pH of cocoa beans. Thus, we concluded that the operation of the prototype is valid for use in biotechnological studies.
Collapse
Affiliation(s)
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito P.O. Box 17-01-2759, Ecuador
| | - José Villacís-Chiriboga
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Quito P.O. Box 17-01-2759, Ecuador
| | - Luis Santiago Guerra
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito P.O. Box 17-12-759, Ecuador
| |
Collapse
|
3
|
Wen L, Yang L, Chen C, Li J, Fu J, Liu G, Kan Q, Ho CT, Huang Q, Lan Y, Cao Y. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods. Crit Rev Food Sci Nutr 2023; 64:8367-8383. [PMID: 37068005 DOI: 10.1080/10408398.2023.2199425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Fermented foods are important components of the human diet. There is increasing awareness of abundant nutritional and functional properties present in fermented foods that arise from the transformation of substrates by microbial communities. Thus, it is significant to unravel the microbial communities and mechanisms of characteristic flavor formation occurring during fermentation. There has been rapid development of high-throughput and other omics technologies, such as metaproteomics and metabolomics, and as a result, there is growing recognition of the importance of integrating these approaches. The successful applications of multi-omics approaches and bioinformatics analyses have provided a solid foundation for exploring the fermentation process. Compared with single-omics, multi-omics analyses more accurately delineate microbial and molecular features, thus they are more apt to reveal the mechanisms of fermentation. This review introduces fermented foods and an overview of single-omics technologies - including metagenomics, metatranscriptomics, metaproteomics, and metabolomics. We also discuss integrated multi-omics and bioinformatic analyses and their role in recent research progress related to fermented foods, as well as summarize the main potential pathways involved in certain fermented foods. In the future, multilayered analyses of multi-omics data should be conducted to enable better understanding of flavor formation mechanisms in fermented foods.
Collapse
Affiliation(s)
- Linfeng Wen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lixin Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Cong Chen
- Guangdong Eco-engineering Polytechnic, Guangzhou, China
| | - Jun Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Jiangyan Fu
- Guangdong Meiweixian Flavoring Foods Co., Ltd, Zhongshan, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qixin Kan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
The Role of Nutrition in Mitigating the Effects of COVID-19 from Infection through PASC. Nutrients 2023; 15:nu15040866. [PMID: 36839224 PMCID: PMC9961621 DOI: 10.3390/nu15040866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
The expansive and rapid spread of the SARS-CoV-2 virus has resulted in a global pandemic of COVID-19 infection and disease. Though initially perceived to be acute in nature, many patients report persistent and recurrent symptoms beyond the infectious period. Emerging as a new epidemic, "long-COVID", or post-acute sequelae of coronavirus disease (PASC), has substantially altered the lives of millions of people globally. Symptoms of both COVID-19 and PASC are individual, but share commonality to established respiratory viruses, which include but are not limited to chest pain, shortness of breath, fatigue, along with adverse metabolic and pulmonary health effects. Nutrition plays a critical role in immune function and metabolic health and thus is implicated in reducing risk or severity of symptoms for both COVID-19 and PASC. However, despite the impact of nutrition on these key physiological functions related to COVID-19 and PASC, the precise role of nutrition in COVID-19 infection and PASC onset or severity remains to be elucidated. This narrative review will discuss established and emerging nutrition approaches that may play a role in COVID-19 and PASC, with references to the established nutrition and clinical practice guidelines that should remain the primary resources for patients and practitioners.
Collapse
|
5
|
Exploring the Core Microbiota of Four Different Traditional Fermented Beverages from the Colombian Andes. FERMENTATION 2022. [DOI: 10.3390/fermentation8120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fermentation is an ancient process used to prepare and preserve food. Currently, fermented beverages are part of the culture of people living in the Colombian Andean Region, and they are a vital part of their cosmology and ancestral vision. Chicha, Forcha, Champús, and Masato are some of the most common Colombian Andes region’s traditional fermented beverages. These drinks come from the fermentation of maize (Zea maize), but other cereals such as wheat or rye, could be used. The fermentation is carried out by a set of bacteria and yeasts that provide characteristic organoleptic properties of each beverage. In this work, the information collected from the metagenomics analyses by sequencing ITS 1-4 (Internal Transcriber Spacer) and the 16S ribosomal gene for fungi and the V3-V4 region of the rDNA for bacteria allowed us to identify the diversity present in these autochthonous fermented beverages made with maize. The sequencing analysis showed the presence of 39 bacterial and 20 fungal genera. In addition, we determined that only nine genera of bacteria and two genera of fungi affect the organoleptic properties of smell, colour, and flavour, given the production of compounds such as lactic acid, alcohol, and phenols, highlighting the critical role of these microorganisms. Our findings provide new insights into the core microbiota of these beverages, represented by Lactobacillus fermentum, Acetobacter pasteurianus, and Saccharomyces cerevisiae.
Collapse
|
6
|
Wu Y, Li A, Cheng L, Chen Q, Li J, Xu Y, Huo D. Deep Shotgun metagenomic and 16S rRNA analysis revealed the microbial diversity of lactic acid bacteria in traditional fermented foods of eastern Hainan, China. Food Funct 2022; 13:12938-12952. [PMID: 36448340 DOI: 10.1039/d2fo02501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The eastern part of Hainan, China, has a flat terrain and a suitable climate with abundant sunshine and rain. This unique environment makes the tropical microbial resources of natural fermented food unique and rich. Therefore, we combined Shotgun metagenomic sequencing, 16S rRNA sequencing and pure culture technology to analyze the microbial diversity, microbiota composition, species differences and correlation of 30 traditional fermented food samples collected from Wenchang, Qionghai, Wanning and Lingshui in the eastern part of Hainan province, and isolated, identified and preserved the microorganisms in them. The results showed that the microbial community structure differs significantly between samples from different regions and between different substrates. The alpha diversity of microorganisms in traditional fermented foods in the Wanning area was higher than those of the other three areas. The beta diversity indicated that the microbiota structural difference between Wanning and Qionghai was smaller. This is consistent with the fact that the precipitation in the Wanning area is the highest and similar to that of Qionghai. The alpha diversity of microorganisms was the highest in fermented vegetables, followed by fermented grains, and the lowest in fermented seafood. Beta diversity showed that the microbiota composition of fermented grains and fermented vegetables is very similar, but that of fermented seafood is significantly different. The results of microbiota structural analysis showed that firmicutes and proteobacteria are the dominant bacterial phyla, and Lactobacillus plantarum and Lactobacillus fermentum are the dominant species in traditional fermented foods in eastern Hainan. Lactic acid bacteria are the dominant species in traditional fermented foods from the eastern Hainan region of China, regardless of the substrate used in fermentation. According to the microbial functional characteristics, the microbial metabolism and biosynthesis pathways in traditional fermented foods in Hainan tend to be active. In addition, combined with pure culture technology, we isolated, identified and preserved 342 lactic acid bacteria strains from traditional fermented food in eastern Hainan province. This study helped us understand the different characteristics of microbial communities in tropical southern China and supplement the Lactobacillus species resource pool in tropical southern China. Moreover, it provided new insights and directions for the development and utilization of fermented foods.
Collapse
Affiliation(s)
- Yuqing Wu
- School of Food Science and Engineering, School of Public Administration, Hainan University, Haikou, China.
| | - Ao Li
- School of Food Science and Engineering, School of Public Administration, Hainan University, Haikou, China.
| | - Lin Cheng
- School of Food Science and Engineering, School of Public Administration, Hainan University, Haikou, China.
| | - Qianxi Chen
- School of Food Science and Engineering, School of Public Administration, Hainan University, Haikou, China.
| | - Jiyang Li
- School of Food Science and Engineering, School of Public Administration, Hainan University, Haikou, China.
| | - Yanqing Xu
- School of Food Science and Engineering, School of Public Administration, Hainan University, Haikou, China.
| | - Dongxue Huo
- School of Food Science and Engineering, School of Public Administration, Hainan University, Haikou, China. .,One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
7
|
Zinno P, Calabrese FM, Schifano E, Sorino P, Di Cagno R, Gobbetti M, Parente E, De Angelis M, Devirgiliis C. FDF-DB: A Database of Traditional Fermented Dairy Foods and Their Associated Microbiota. Nutrients 2022; 14:4581. [PMID: 36364843 PMCID: PMC9658602 DOI: 10.3390/nu14214581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Fermented foods are attracting increasing interest due to their nutritional and health benefits, including a positive impact on gut microbiota exerted by their associated microbes. However, information relative to traditional fermented dairy products, along with their autochthonous microbiota, is still fragmented and poorly standardized. Therefore, our aim was to collect and aggregate data useful for obtaining a comprehensive overview translated in a classical database interface that can be easily handled by users. METHODS a preliminary inventory was built up by systematically collecting data from publicly available resources for the creation of a list of traditional dairy foods produced worldwide, including additional metadata useful for stratifying, and collapsing subgroups. RESULTS we developed the Fermented Dairy Food Database (FDF-DB), a feasible resource comprising 1852 traditional dairy foods (cheeses, fermented milks, and yogurt) for which microbial content and other associated metadata such as geographical indication label, country/region of origin, technological aspects were gathered. CONCLUSIONS FDF-DB is a useful and user-friendly resource where taxonomic information and processing production details converge. This resource will be of great aid for researchers, food industries, stakeholders and any user interested in the identification of technological and microbiological features characterizing traditional fermented dairy products.
Collapse
Affiliation(s)
- Paola Zinno
- Research Centre for Food and Nutrition, CREA (Consiglio per la Ricerca in Agricoltura E L’Analisi Dell’Economia Agraria), Via Ardeatina 546, 00178 Rome, Italy
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Giovanni Amendola 165/a, 70126 Bari, Italy
| | - Emily Schifano
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Paolo Sorino
- Department of Electrical and Information Engineering, Polytechnic of Bari, 70125 Bari, Italy
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bolzano, 39100 Bolzano, Italy
| | - Eugenio Parente
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Giovanni Amendola 165/a, 70126 Bari, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Consiglio per la Ricerca in Agricoltura E L’Analisi Dell’Economia Agraria), Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|