1
|
Prates JAM. Enhancing Meat Quality and Nutritional Value in Monogastric Livestock Using Sustainable Novel Feed Ingredients. Foods 2025; 14:146. [PMID: 39856813 PMCID: PMC11764879 DOI: 10.3390/foods14020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
This study explores the potential of novel feed ingredients for monogastric animals, such as pigs and poultry, to enhance meat quality and nutritional value while reducing the environmental footprint of production. Innovative feed options like black soldier fly larvae, Schizochytrium microalga, Laminaria seaweed, fermented soybean hulls, fortified flaxseed and grape pomace have significantly improved meat quality and nutritional traits. Results indicate that these ingredients enrich meat with omega-3 fatty acids, antioxidants, vitamins and minerals, enhancing nutritional value while improving sensory traits such as flavour, tenderness and colour. For instance, including Laminaria seaweed increased iodine content by up to 45%, while Schizochytrium microalga improved omega-3 deposition by over 70%. The inclusion of grape pomace enhanced oxidative stability and extended meat shelf life. This review also discusses the influence of ingredient composition, inclusion levels and processing techniques, alongside challenges such as regulatory constraints, ingredient cost and palatability. The alignment of these alternative feeds with circular economy principles and sustainability goals further emphasizes their role in reducing environmental impact. By summarising recent advancements, this paper underscores the transformative potential of novel feed ingredients in advancing monogastric meat production towards greater nutritional quality, sustainability and consumer acceptance.
Collapse
Affiliation(s)
- José A. M. Prates
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Av. da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
2
|
Liu S, Chen D, Zhu X, Wang X, Li X, Du Y, Zhang P, Tian J, Song Y. Inhaled delivery of cetuximab-conjugated immunoliposomes loaded with afatinib: A promising strategy for enhanced non-small cell lung cancer treatment. Drug Deliv Transl Res 2024; 14:3147-3162. [PMID: 38381317 DOI: 10.1007/s13346-024-01536-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Afatinib (AT), an FDA-approved aniline-quinazoline derivative, is a first-line treatment for metastatic non-small cell lung cancer (NSCLC). Combining it with cetuximab (CX), a chimeric human-murine derivative immunoglobulin-G1 monoclonal antibody (mAb) targeting the extracellular domain of epidermal growth factor receptor (EGFR), has shown significant improvements in median progression-free survival. Previously, we developed cetuximab-conjugated immunoliposomes loaded with afatinib (AT-MLP) and demonstrated their efficacy against NSCLC cells (A549 and H1975). In this study, we aimed to explore the potential of pulmonary delivery to mitigate adverse effects associated with oral administration and intravenous injection. We formulated AT-MLP dry powders (AT-MLP-DPI) via freeze drying using tert-butanol and mannitol as cryoprotectants in the hydration medium. The physicochemical and aerodynamic properties of dry powders were well analyzed firstly. In vitro cellular uptake and cytotoxicity study revealed concentration- and time-dependent cellular uptake behavior and antitumor efficacy of AT-MLP-DPI, while Transwell assay demonstrated the superior inhibitory effects on NSCLC cell invasion and migration. Furthermore, in vivo pharmacokinetic study showed that pulmonary delivery of AT-MLP-DPI significantly increased bioavailability, prolonged blood circulation time, and exhibited higher lung concentrations compared to alternative administration routes and formulations. The in vivo antitumor efficacy study carried on tumor-bearing nude mice indicated that inhaled AT-MLP-DPI effectively suppressed lung tumor growth.
Collapse
Affiliation(s)
- Sha Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China.
| | - Daoyuan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Xiaosu Zhu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Xiaowen Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Xiao Li
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Yuan Du
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Peng Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Jingwei Tian
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai, 264000, Shandong, People's Republic of China
| | - Yingjian Song
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, People's Republic of China.
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
3
|
Van De Walle S, Gifuni I, Coleman B, Baune MC, Rodrigues A, Cardoso H, Fanari F, Muylaert K, Van Royen G. Innovative vs classical methods for drying heterotrophic Chlorella vulgaris: Impact on protein quality and sensory properties. Food Res Int 2024; 182:114142. [PMID: 38519160 DOI: 10.1016/j.foodres.2024.114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Drying is a necessary step in the microalgae production chain to reduce microbial load and oxidative degradation of the end product. Depending on the differences in applied temperature and treatment time, the process of drying can have a substantial impact on protein quality and aroma, important characteristics determining the incorporation potential in food products. In this study, we compared the drying of heterotrophic Chorella vulgaris with both innovative (agitated thin film drying (ATFD), pulse combustion drying (PCD) and solar drying (SolD)) and commonly used drying techniques (spray drying (SprD) and freeze drying (FD)). To evaluate the impact on protein quality, we evaluated techno-functional properties, in vitro digestibility (INFOGEST) as well as protein denaturation using differential scanning calorimetry (DSC). A sensory analysis was performed by a trained expert panel, combined with headspace solid-phase microextraction (HS-SPME) - gas chromatography-mass spectrometry (GC-MS) to determine volatile organic compounds (VOCs). ATFD was found to increase techno-functional properties such as gelling, water holding and solubility as well as in vitro protein digestibility. These observations could be related to induced cell disruption and protein denaturation by ATFD. Sensory analysis indicated an increased earthy off-flavor after ATFD. Interestingly, the high-temperature PCD led to an increase in cacao odor while low-temperature FD resulted in lower flavor, odors and VOCs. These results demonstrate that protein quality and sensorial properties of C. vulgaris can be steered through the type of drying, which could help in the selection of application-specific drying methods. Overall, this work could promote the incorporation of microalgal single cell proteins in different innovative food products.
Collapse
Affiliation(s)
- Simon Van De Walle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium; Biology Department KULAK, KU Leuven Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium.
| | - Imma Gifuni
- AlgoSource Technologies SAS, 7 Rue Eugène Cornet, 44600 Saint-Nazaire, France
| | - Bert Coleman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Marie-Christin Baune
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Str. 7, 49610 Quakenbrück, Germany
| | | | - Helena Cardoso
- Allmicroalgae Natural Products S.A., 2445-413 Pataias, Portugal
| | - Fabio Fanari
- Food Industries, Institute of Agriculture and Food Research and Technology (IRTA), Finca Camps i Armet s/n, 17121 Monells, Spain
| | - Koenraad Muylaert
- Biology Department KULAK, KU Leuven Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Geert Van Royen
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| |
Collapse
|
4
|
Qin S, Wang K, Gao F, Ge B, Cui H, Li W. Biotechnologies for bulk production of microalgal biomass: from mass cultivation to dried biomass acquisition. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:131. [PMID: 37644516 PMCID: PMC10466707 DOI: 10.1186/s13068-023-02382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Microalgal biomass represents a sustainable bioresource for various applications, such as food, nutraceuticals, pharmaceuticals, feed, and other bio-based products. For decades, its mass production has attracted widespread attention and interest. The process of microalgal biomass production involves several techniques, mainly cultivation, harvesting, drying, and pollution control. These techniques are often designed and optimized to meet optimal growth conditions for microalgae and to produce high-quality biomass at acceptable cost. Importantly, mass production techniques are important for producing a commercial product in sufficient amounts. However, it should not be overlooked that microalgal biotechnology still faces challenges, in particular the high cost of production, the lack of knowledge about biological contaminants and the challenge of loss of active ingredients during biomass production. These issues involve the research and development of low-cost, standardized, industrial-scale production equipment and the optimization of production processes, as well as the urgent need to increase the research on biological contaminants and microalgal active ingredients. This review systematically examines the global development of microalgal biotechnology for biomass production, with emphasis on the techniques of cultivation, harvesting, drying and control of biological contaminants, and discusses the challenges and strategies to further improve quality and reduce costs. Moreover, the current status of biomass production of some biotechnologically important species has been summarized, and the importance of improving microalgae-related standards for their commercial applications is noted.
Collapse
Affiliation(s)
- Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China.
| | - Kang Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengzheng Gao
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, Netherlands
- Laboratory of Sustainable Food Processing, ETH Zürich, 8092, Zurich, Switzerland
- Laboratory of Nutrition and Metabolic Epigenetics, ETH Zürich, 8603, Schwerzenbach, Switzerland
| | - Baosheng Ge
- College of Chemical Engineering and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hongli Cui
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, No. 19, Chunhui Road, Laishan District, Yantai, 264003, Shandong, China
| |
Collapse
|
5
|
Prandi B, Boukid F, Van De Walle S, Cutroneo S, Comaposada J, Van Royen G, Sforza S, Tedeschi T, Castellari M. Protein Quality and Protein Digestibility of Vegetable Creams Reformulated with Microalgae Inclusion. Foods 2023; 12:2395. [PMID: 37372606 PMCID: PMC10297650 DOI: 10.3390/foods12122395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Microalgae are considered a valuable source of proteins that are used to enhance the nutritional value of foods. In this study, a standard vegetable cream recipe was reformulated through the addition of single-cell ingredients from Arthrospira platensis (spirulina), Chlorella vulgaris, Tetraselmis chui, or Nannochloropsis oceanica at two levels of addition (1.5% and 3.0%). The impact of microalgae species and an addition level on the amino acid profile and protein in vitro digestibility of the vegetable creams was investigated. The addition of microalgae to vegetable creams improved the protein content and the amino acid nutritional profile of vegetable creams, whereas no significant differences were observed in protein digestibility, regardless of the species and level of addition, indicating a similar degree of protein digestibility in microalgae species despite differences in their protein content and amino acid profile. This study indicates that the incorporation of microalgae is a feasible strategy to increase the protein content and nutritional quality of foods.
Collapse
Affiliation(s)
- Barbara Prandi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43121 Parma, Italy; (B.P.); (S.C.); (S.S.); (T.T.)
| | - Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Industry Area, Finca Camps i Armet s/n, 17121 Girona, Spain; (J.C.); (M.C.)
- ClonBio Group Ltd., 6 Fitzwilliam Pl, D02 XE61 Dublin, Ireland
| | - Simon Van De Walle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; (S.V.D.W.); (G.V.R.)
| | - Sara Cutroneo
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43121 Parma, Italy; (B.P.); (S.C.); (S.S.); (T.T.)
| | - Josep Comaposada
- Institute of Agriculture and Food Research and Technology (IRTA), Food Industry Area, Finca Camps i Armet s/n, 17121 Girona, Spain; (J.C.); (M.C.)
| | - Geert Van Royen
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium; (S.V.D.W.); (G.V.R.)
| | - Stefano Sforza
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43121 Parma, Italy; (B.P.); (S.C.); (S.S.); (T.T.)
| | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43121 Parma, Italy; (B.P.); (S.C.); (S.S.); (T.T.)
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Industry Area, Finca Camps i Armet s/n, 17121 Girona, Spain; (J.C.); (M.C.)
| |
Collapse
|
6
|
Boukid F, Castellari M. Algae as Nutritional and Functional Food Sources. Foods 2022; 12:foods12010122. [PMID: 36613337 PMCID: PMC9818788 DOI: 10.3390/foods12010122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022] Open
Abstract
Algae are a large and diverse group of autotrophic eukaryotic and photosynthetic aquatic organisms [...].
Collapse
Affiliation(s)
- Fatma Boukid
- ClonBio Group Ltd., D02 XE61 Dublin, Ireland
- Correspondence: (F.B.); (M.C.)
| | - Massimo Castellari
- Institute of Agriculture and Food Research and Technology (IRTA), Food Industry Area, Finca Camps i Armet s/n, 17121 Monells, Spain
- Correspondence: (F.B.); (M.C.)
| |
Collapse
|