1
|
Qin Z, Li Z, Huang X, Du L, Li W, Gao P, Chen Z, Zhang J, Guo Z, Li Z, Liu B, Shen T. Advances in 3D and 4D Printing of Gel-Based Foods: Mechanisms, Applications, and Future Directions. Gels 2025; 11:94. [PMID: 39996637 PMCID: PMC11854713 DOI: 10.3390/gels11020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
This review examines recent advancements in gel-based 3D and 4D food-printing technologies, with a focus on their applications in personalized nutrition and functional foods. It emphasizes the critical role of tunable rheological and mechanical properties in gels such as starch, protein, and Pickering emulsions, which are essential for successful printing. The review further explores 4D food printing, highlighting stimuli-responsive mechanisms, including color changes and deformation induced by external factors like temperature and pH. These innovations enhance both the sensory and functional properties of printed foods, advancing opportunities for personalization. Key findings from recent studies are presented, demonstrating the potential of various gels to address dietary challenges, such as dysphagia, and to enable precise nutritional customization. The review integrates cutting-edge research, identifies emerging trends and challenges, and underscores the pivotal role of gel-based materials in producing high-quality 3D-printed foods. Additionally, it highlights the potential of Pickering emulsions and lipid gels for expanding functionality and structural diversity. Overall, this work provides a comprehensive foundation for advancing future research and practical applications in gel-based 3D and 4D food printing.
Collapse
Affiliation(s)
- Zhou Qin
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Liuzi Du
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Wenlong Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Peipei Gao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Zhiyang Chen
- International Joint Research Laboratory of Intelligent Agriculture and Agro-Products Processing, Jiangsu Education Department, Zhenjiang 212013, China;
| | - Junjun Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Ziang Guo
- College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China;
| | - Zexiang Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Baoze Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| | - Tingting Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Z.Q.); (X.H.); (L.D.); (W.L.); (P.G.); (J.Z.); (Z.L.); (B.L.); (T.S.)
| |
Collapse
|
2
|
Domżalska Z, Jakubczyk E. Characteristics of Food Printing Inks and Their Impact on Selected Product Properties. Foods 2025; 14:393. [PMID: 39941986 PMCID: PMC11817896 DOI: 10.3390/foods14030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Three-dimensional printing, or additive manufacturing, produces three-dimensional objects using a digital model. Its utilisation has been observed across various industries, including the food industry. Technology offers a wide range of possibilities in this field, including creating innovative products with unique compositions, shapes, and textures. A significant challenge in 3D printing is the development of the optimal ink composition. These inks must possess the appropriate rheology and texture for printing and meet nutritional and sensory requirements. The rheological properties of inks play a pivotal role in the printing process, influencing the formation of stable structures. This article comprehensively characterises food inks, distinguishing two primary categories and their respective subgroups. The first category encompasses non-natively extrudable inks, including plant-based inks derived from fruits and vegetables and meat-based inks. The second category comprises natively extrudable inks, encompassing dairy-based, hydrogel-based, and confectionary-based inks. The product properties of rheology, texture, fidelity, and printing stability are then discussed. Finally, the innovative use of food inks is shown.
Collapse
Affiliation(s)
| | - Ewa Jakubczyk
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| |
Collapse
|
3
|
Zhong Y, Wang B, Lv W, Wu Y, Lv Y, Sheng S. Recent research and applications in lipid-based food and lipid-incorporated bioink for 3D printing. Food Chem 2024; 458:140294. [PMID: 38968712 DOI: 10.1016/j.foodchem.2024.140294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
Three-dimensional (3D) printing, as an emerging digital production technology, has recently been receiving increasing attention in food processing. It is important to understand the effect of key ingredients of food materials on the printing, which makes it possible to achieve a wider range of structures using few nozzles and to provide tailored nutrition and personalization. This comprehensive review delves into the latest research on 3D-printed lipid-based foods, encompassing a variety of products such as chocolate, processed cheese, as well as meat. It also explores the development and application of food bioinks that incorporate lipids as a pivotal component, including those based on starch, protein, oleogels, bigels, and emulsions, as well as emulsion gels. Moreover, this review identifies the current challenges and presents an outlook on future research directions in the field of 3D food printing, especially the research and application of lipids in food 3D printing.
Collapse
Affiliation(s)
- Yuanliang Zhong
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Bo Wang
- School of Behavioural and Health Science, Australian Catholic University, Sydney, NSW 2060, Australia
| | - Weiqiao Lv
- College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Yiran Wu
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Yinqiao Lv
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Shaoyang Sheng
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
4
|
Yang S, Wu H, Peng C, He J, Pu Z, Lin Z, Wang J, Hu Y, Su Q, Zhou B, Yong X, Lan H, Hu N, Hu X. From the microspheres to scaffolds: advances in polymer microsphere scaffolds for bone regeneration applications. BIOMATERIALS TRANSLATIONAL 2024; 5:274-299. [PMID: 39734699 PMCID: PMC11681185 DOI: 10.12336/biomatertransl.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 12/31/2024]
Abstract
The treatment and repair of bone tissue damage and loss due to infection, tumours, and trauma are major challenges in clinical practice. Artificial bone scaffolds offer a safer, simpler, and more feasible alternative to bone transplantation, serving to fill bone defects and promote bone tissue regeneration. Ideally, these scaffolds should possess osteoconductive, osteoinductive, and osseointegrative properties. However, the current first-generation implants, represented by titanium alloys, have shown poor bone-implant integration performance and cannot meet the requirements for bone tissue repair. This has led to increased research on second and third generation artificial bone scaffolds, which focus on loading bioactive molecules and cells. Polymer microspheres, known for their high specific surface areas at the micro- and nanoscale, exhibit excellent cell and drug delivery behaviours. Additionally, with their unique rigid structure, microsphere scaffolds can be constructed using methods such as thermal sintering, injection, and microsphere encapsulation. These scaffolds not only ensure the excellent cell drug loading performance of microspheres but also exhibit spatial modulation behaviour, aiding in bone repair within a three-dimensional network structure. This article provides a summary and discussion of the use of polymer microsphere scaffolds for bone repair, focusing on the mechanisms of bone tissue repair and the current status of clinical bone grafts, aimed at advancing research in bone repair.
Collapse
Affiliation(s)
- Shuhao Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Haoming Wu
- School of Preclinical Medicine of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Chao Peng
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Jian He
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Zhengguang Pu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Zhidong Lin
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jun Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yingkun Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Qiao Su
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Bingnan Zhou
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province, China
| | - Hai Lan
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Tian H, Wu J, Hu Y, Chen X, Cai X, Wen Y, Chen H, Huang J, Wang S. Recent advances on enhancing 3D printing quality of protein-based inks: A review. Compr Rev Food Sci Food Saf 2024; 23:e13349. [PMID: 38638060 DOI: 10.1111/1541-4337.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
3D printing is an additive manufacturing technology that locates constructed models with computer-controlled printing equipment. To achieve high-quality printing, the requirements on rheological properties of raw materials are extremely restrictive. Given the special structure and high modifiability under external physicochemical factors, the rheological properties of proteins can be easily adjusted to suitable properties for 3D printing. Although protein has great potential as a printing material, there are many challenges in the actual printing process. This review summarizes the technical considerations for protein-based ink 3D printing. The physicochemical factors used to enhance the printing adaptability of protein inks are discussed. The post-processing methods for improving the quality of 3D structures are described, and the application and problems of fourth dimension (4D) printing are illustrated. The prospects of 3D printing in protein manufacturing are presented to support its application in food and cultured meat. The native structure and physicochemical factors of proteins are closely related to their rheological properties, which directly link with their adaptability for 3D printing. Printing parameters include extrusion pressure, printing speed, printing temperature, nozzle diameter, filling mode, and density, which significantly affect the precision and stability of the 3D structure. Post-processing can improve the stability and quality of 3D structures. 4D design can enrich the sensory quality of the structure. 3D-printed protein products can meet consumer needs for nutritional or cultured meat alternatives.
Collapse
Affiliation(s)
- Han Tian
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiajie Wu
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Yanyu Hu
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xu Chen
- Qingyuan Innovation Laboratory, Quanzhou, China
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Cai
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| | - Yaxin Wen
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Huimin Chen
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jianlian Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, Xiamen, China
- Anjoy Food Group Co. Ltd., Xiamen, China
| | - Shaoyun Wang
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Qingyuan Innovation Laboratory, Quanzhou, China
- Marine Green Processing Research Center, Fuzhou Institute of Oceanography, Fuzhou, China
| |
Collapse
|
6
|
Barrios-Rodríguez YF, Igual M, Martínez-Monzó J, García-Segovia P. Multivariate evaluation of the printing process on 3D printing of rice protein. Food Res Int 2024; 176:113838. [PMID: 38163690 DOI: 10.1016/j.foodres.2023.113838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
The combination of printing parameters appropriately improves the printability of 3D-printed foods. In this regard, the present study aims to evaluate the effect of 3D printing process parameters on protein food generation. Printability of a cylinder 3 cm in diameter and 1 cm in height using a protein mixture of rice water and xanthan gum with a ratio of 30:70:0.5 was evaluated in an extrusion printer with an XYZ system. A ½ fractional factorial design was used with three factors: nozzle diameter (1.2 - 2.2 mm), layer height (1.0 - 2.0 mm), and print speed (20 - 50 mm/s). Each combination of factor levels was performed in triplicate for 12 runs plus three central points. Print time (min), sample weight, change in diameter (%), change in height (%), change in volume (%), mass flow rate (mg/s), appreciation (qualitative variable), and textural and rheology characters were obtained as response variables. The linear effects of the factors and combination factors were evaluated by analysis of variance. Additionally, a principal component analysis was performed to visualize the similarity between the observations and the relationship between the variables. The results showed that the layer height and nozzle diameter affect the printing accuracy concerning surface quality, shape stability, resolution, and layer layout. The nozzle with a diameter of 1.7 mm combined with speeds between 35 and 50 mm/s allowed the effects of overextrusion to be overcome, generating a better flow of the material. Low scores in the printability variable were related to low-speed values (20 mm/s) and a high nozzle diameter (2.2 mm), which generated higher deformations in the printed protein cylinder. Additionally, some printing conditions affected the textural and rheological characteristics, which allowed inferring that the capacity of the protein mass to store and recover energy in compression processes is conditioned by the printing parameters.
Collapse
Affiliation(s)
| | - Marta Igual
- i-FOOD, Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Spain
| | - Javier Martínez-Monzó
- i-FOOD, Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Spain
| | - Purificación García-Segovia
- i-FOOD, Instituto Universitario de Ingeniería de Alimentos-FoodUPV, Universitat Politècnica de València, Spain.
| |
Collapse
|
7
|
Mittal S, Bhuiyan MHR, Ngadi MO. Challenges and Prospects of Plant-Protein-Based 3D Printing. Foods 2023; 12:4490. [PMID: 38137294 PMCID: PMC10743141 DOI: 10.3390/foods12244490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Three-dimensional (3D) printing is a rapidly developing additive manufacturing technique consisting of the deposition of materials layer-by-layer to produce physical 3D structures. The technique offers unique opportunities to design and produce new products that cater to consumer experience and nutritional requirements. In the past two decades, a wide range of materials, especially plant-protein-based materials, have been documented for the development of personalized food owing to their nutritional and environmental benefits. Despite these benefits, 3D printing with plant-protein-based materials present significant challenges because there is a lack of a comprehensive study that takes into account the most relevant aspects of the processes involved in producing plant-protein-based printable items. This review takes into account the multi-dimensional aspects of processes that lead to the formulation of successful printable products which includes an understanding of rheological characteristics of plant proteins and 3D-printing parameters, as well as elucidating the appropriate concentration and structural hierarchy that are required to maintain stability of the substrate after printing. This review also highlighted the significant and most recent research on 3D food printing with a wide range of plant proteins. This review also suggests a future research direction of 3D printing with plant proteins.
Collapse
Affiliation(s)
| | | | - Michael O. Ngadi
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X 3V9, Canada; (S.M.); (M.H.R.B.)
| |
Collapse
|
8
|
Wu H, Sang S, Weng P, Pan D, Wu Z, Yang J, Liu L, Farag MA, Xiao J, Liu L. Structural, rheological, and gelling characteristics of starch-based materials in context to 3D food printing applications in precision nutrition. Compr Rev Food Sci Food Saf 2023; 22:4217-4241. [PMID: 37583298 DOI: 10.1111/1541-4337.13217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/17/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
Starch-based materials have viscoelasticity, viscous film-forming, dough pseudoplasticity, and rheological properties, which possess the structural characteristics (crystal structure, double helix structure, and layered structure) suitable for three-dimensional (3D) food printing inks. 3D food printing technology has significant advantages in customizing personalized and precise nutrition, expanding the range of ingredients, designing unique food appearances, and simplifying the food supply chain. Precision nutrition aims to consider individual nutritional needs and individual differences, which include special food product design and personalized precise nutrition, thus expanding future food resources, then simplifying the food supply chain, and attracting extensive attention in food industry. Different types of starch-based materials with different structures and rheological properties meet different 3D food printing technology requirements. Starch-based materials suitable for 3D food printing technology can accurately deliver and release active substances or drugs. These active substances or drugs have certain regulatory effects on the gut microbiome and diabetes, so as to maintain personalized and accurate nutrition.
Collapse
Affiliation(s)
- Huanqi Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Junsi Yang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Orense, Spain
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, P. R. China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
9
|
Demircan E, Aydar EF, Mertdinc Mertdinç Z, Kasapoglu Kasapoğlu KN, Ozcelik Özçelik B. 3D printable vegan plant-based meat analogue: Fortification with three different mushrooms, investigation of printability, and characterization. Food Res Int 2023; 173:113259. [PMID: 37803572 DOI: 10.1016/j.foodres.2023.113259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 07/08/2023] [Indexed: 10/08/2023]
Abstract
In this study, a meat analogue formulation prepared using different protein sources as a printable ink for 3D printers and fortified with three different mushroom cultivars (reishi, Ganoderma lucidum (GL); saffron milk-cap, Lactarius deliciosus (LD); and oyster, Pleurotus ostreatus (PO)). 3D printing performance of the prepared inks was evaluated by factorial design in terms of nozzle height, printing speed, and flow compensation. New methods of maximum layer height and reprintability of plant-based meat analogues were conducted for the first time. Inks were characterized by analyzing rheological properties, microstructure, color characteristics, texture profile, cooking loss, amino acid content, and sensory evaluation. Results showed that the nozzle height and printing speed were found to be most effective on accuracy of prints and smoothness of layers. All inks (C, GL, LD and PO) represented shear-thinning and gel-like viscoelastic behavior (G' > G″) with predominant elasticity (tan δ < 1). Therefore they were suited for 3D printing and possessed supporting the following layers for additive manufacturing as well as meeting the criteria for a stable structure. Meat analogue was printed successfully without perceived defects in all formulations, except the GL was looking linty. LD and PO inks brought the advantage of recycling as a result of their re-printability whereas GL could not. Moreover, mushroom fortification reduced hardness, stiffness, springiness, and chewiness properties of the meat analogues whereas it increased the juiciness with reasonable overall acceptance. Mushroom fortification also enhanced the nutritional value and improved release of umami amino acids. The findings of the study demonstrated that mushrooms could be a functional and nutritious candidate for 3D printable plant-based meat analogues.
Collapse
Affiliation(s)
- Evren Demircan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkiye.
| | - Elif Feyza Aydar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkiye.
| | - Zehra Mertdinc Mertdinç
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkiye.
| | - Kadriye Nur Kasapoglu Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkiye.
| | - Beraat Ozcelik Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkiye; Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer 34467, Istanbul, Turkiye.
| |
Collapse
|
10
|
Ahmadzadeh S, Lenie MDR, Mirmahdi RS, Ubeyitogullari A. Designing future foods: Harnessing 3D food printing technology to encapsulate bioactive compounds. Crit Rev Food Sci Nutr 2023; 65:303-319. [PMID: 37882785 DOI: 10.1080/10408398.2023.2273446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Bioactive compounds (BCs) provide numerous health benefits by interacting with one or more components of living tissues and systems. However, despite their potential health benefits, most of the BCs have low bioaccessibility and bioavailability, hindering their potential health-promoting activities. The conventional encapsulation techniques are time-consuming and have major limitations in their food applications, including the use of non-food grade chemicals, undesired sensory attributes, and storage stability issues. A cutting-edge, new technique based on 3D printing can assist in resolving the problems associated with conventional encapsulation technologies. 3D food printing can help protect BCs by incorporating them precisely into three-dimensional matrices, which can provide (i) protection during storage, (ii) enhanced bioavailability, and (iii) effective delivery and controlled release of BCs. Recently, various 3D printing techniques and inks have been investigated in order to create delivery systems with different compositions and geometries, as well as diverse release patterns. This review emphasizes the advances in 3D printing-based encapsulation approaches, leading to enhanced delivery systems and customized food formulations.
Collapse
Affiliation(s)
- Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | | | | | - Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
11
|
Demircan E, Özçelik B. Development of affordable 3D food printer with an exchangeable syringe-pump mechanism. HARDWAREX 2023; 14:e00430. [PMID: 37256080 PMCID: PMC10225918 DOI: 10.1016/j.ohx.2023.e00430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/12/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023]
Abstract
The technique of additive manufacturing has increasing popularity in food research area as well as other scientific fields. However, 3D food printers are expensive options compared to 3D polymer printers. Scientists, that require laboratory scale production capacities, resemble the syringe-pump systems that available in open source and free hardware designs. Present study aimed to develop an exchangeable syringe-pump mechanism (SPM) to demonstrate transformation of conventional 3D printer from polymer to food extrusion. The SPM can print a variety of materials, including miscellaneous foods, pastes, hydrogels and even biopolymers. The complete mechanism relies mostly on 3D printed parts and costs approximately 72$. Therefore, it allows users to obtain a 3D food printer inexpensively and does not require large amounts of technical labor. The SPM uses big volume (60 ml) luer lock syringe and blunt tip needles for greater versatility and user-friendliness. It could also be extended with cooling mechanism, so that the proposed system gains unique attribute among its counterparts. Finally, a standard polymer-printing 3D-Printer was converted into a laboratory-scale food printer, and edible ink was successfully printed in the desired shape.
Collapse
Affiliation(s)
- Evren Demircan
- Istanbul Technical University, Department of Food Engineering, Turkey
| | - Beraat Özçelik
- Istanbul Technical University, Department of Food Engineering, Turkey
- Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Turkey
| |
Collapse
|
12
|
Xie Y, Liu Q, Zhang W, Yang F, Zhao K, Dong X, Prakash S, Yuan Y. Advances in the Potential Application of 3D Food Printing to Enhance Elderly Nutritional Dietary Intake. Foods 2023; 12:1842. [PMID: 37174380 PMCID: PMC10177834 DOI: 10.3390/foods12091842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The contradiction between the growing demand from consumers for "nutrition & personalized" food and traditional industrialized food production has consistently been a problem in the elderly diet that researchers face and discuss. Three-dimensional (3D) food printing could potentially offer a solution to this problem. This article reviews the recent research on 3D food printing, mainly including the use of different sources of protein to improve the performance of food ink printing, high internal phase emulsion or oleogels as a fat replacement and nutrition delivery system, and functional active ingredients and the nutrition delivery system. In our opinion, 3D food printing is crucial for improving the appetite and dietary intake of the elderly. The critical obstacles of 3D-printed food for the elderly regarding energy supplements, nutrition balance, and even the customization of the recipe in a meal are discussed in this paper. By combining big data and artificial intelligence technology with 3D food printing, comprehensive, personalized, and customized geriatric foods, according to the individual traits of each elderly consumer, will be realized via food raw materials-appearance-processing methods. This article provides a theoretical basis and development direction for future 3D food printing for the elderly.
Collapse
Affiliation(s)
- Yisha Xie
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Qingqing Liu
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Wenwen Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Feng Yang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Kangyu Zhao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Xiuping Dong
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences, University of Queensland, Brisbane 4072, Australia
| | - Yongjun Yuan
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
13
|
Guo Z, Li Z, Cen S, Liang N, Muhammad A, Tahir HE, Shi J, Huang X, Zou X. Modulating hydrophilic properties of β-cyclodextrin/carboxymethyl cellulose colloid particles to stabilize Pickering emulsions for food 3D printing. Carbohydr Polym 2023; 313:120764. [PMID: 37182940 DOI: 10.1016/j.carbpol.2023.120764] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023]
Abstract
This research investigated edible Pickering emulsions stabilized by polysaccharide complexes as inks for food 3D printing. The interface membrane structure in the Pickering emulsion system was formed using complexes consisting of β-cyclodextrin (β-CD) and carboxymethyl cellulose (CMC). Except for provide sufficient steric barrier and electrostatic repulsion to increase the stability of the Pickering emulsions, the interface membrane constructs also can demonstrate good biphasic wettability and lower oil/water interfacial tension. The hydrophilicity of complexes (β-CD/CMC) was mainly adjusted by the ratio of β-CD/CMC (Rβ/C) and the substitution degree (DS) of CMC, which further adjusted the physical and chemical properties of Pickering emulsion to make it correspond to the rheological behavior applied to 3D printing. The stable Pickering emulsion (Rβ/C = 2:2, DS = 1.2, weight ratio of oil phase (φ) = 65 %) displayed excellent printing potential by characterizations analysis of Pickering emulsions. The smoothness, viscosity, and self-supporting ability of the Pickering emulsion under the optimized conditions were further analyzed using a filling density printing experiment of a cuboid model. The emulsifying properties of β-CD were adjusted by hydrophilic CMC to achieve the required amphipathic properties of the complexes to develop Pickering emulsions for food 3D printing.
Collapse
|