1
|
He M, Zhong W, Dai R, Long S, Zhou Y, Zhang T, Zhou B, Tang T, Yang L, Jiang S, Xiao W, Fu Y, Guo J, Gao Z. Linalool exhibit antimicrobial ability against Elizabethkingia miricola by disrupting cellular and metabolic functions. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100380. [PMID: 40225044 PMCID: PMC11986607 DOI: 10.1016/j.crmicr.2025.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Elizabethkingia miricola is a gram-negative bacillus, a life-threatening pathogen in humans and animals. Linalool, a naturally occurring monoterpene alcohol found in plant volatile oils, exhibits highly effective antibacterial properties. This study investigated the antibacterial activity and mechanism of linalool against E. miricola. Initially, linalool showed potent antibacterial activity against E. miricola, with inhibition zone (ZOI), MIC, and MBC values of 36.41 ± 1.23 mm, 0.125 % (v/v, 1.0775 mg/mL), and 0.125 % (v/v, 1.0775 mg/mL), respectively. Secondly, it was observed by electron microscopy that linalool caused crumpling, depression, and size reduction of the cells. Linalool affected cell membrane integrity, causing membrane damage and rupture. Thirdly, transcriptome analysis suggested that linalool affected C5-branched-chain dicarboxylic acid metabolism and the biosynthesis of valine, leucine, and isoleucine, result in increased energy production to linalool stress. Linalool disrupted cell division and RNA function in E. miricola, and the cells responded to linalool-induced oxidative damage by up-regulating the expression of msrB and katG genes. Fourthly, metabolome analysis revealed an increase in metabolites related to the glycerophospholipid metabolic pathway and NADP content in E. miricola, which may be a metabolic response to linalool stress. Taken together, these findings provide a theoretical basis for the antibacterial mechanism of linalool and suggest potential applications for preventing E. miricola infections.
Collapse
Affiliation(s)
- Mingwang He
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Weiming Zhong
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Rongsi Dai
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Su Long
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Ying Zhou
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Tongping Zhang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Boyang Zhou
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Tao Tang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Linlin Yang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Sifan Jiang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Wenbin Xiao
- Hunan Agriculture Product Processing Institute, Dongting Laboratory; International Joint Lab on Fruits &Vegetables Processing, Quality and Safety; Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety; Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - YanJiao Fu
- Hunan Agriculture Product Processing Institute, Dongting Laboratory; International Joint Lab on Fruits &Vegetables Processing, Quality and Safety; Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety; Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Dongting Laboratory; International Joint Lab on Fruits &Vegetables Processing, Quality and Safety; Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety; Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| |
Collapse
|
2
|
Cai J, Chen H, Wang R, Zhong Q, Chen W, Zhang M, He R, Chen W. Membrane Damage and Metabolic Disruption as the Mechanisms of Linalool against Pseudomonas fragi: An Amino Acid Metabolomics Study. Foods 2024; 13:2501. [PMID: 39200428 PMCID: PMC11353791 DOI: 10.3390/foods13162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Pseudomonas fragi (P. fragi) is usually detected in low-temperature meat products, and seriously threatens food safety and human health. Therefore, the study investigated the antibacterial mechanism of linalool against P. fragi from membrane damage and metabolic disruption. Results from field-emission transmission electron microscopy (FETEM) and atomic force microscopy (AFM) showed that linalool damage membrane integrity increases surface shrinkage and roughness. According to Fourier transform infrared (FTIR) spectra results, the components in the membrane underwent significant changes, including nucleic acid leakage, carbohydrate production, protein denaturation and modification, and fatty acid content reduction. The data obtained from amino acid metabolomics indicated that linalool caused excessive synthesis and metabolism of specific amino acids, particularly tryptophan metabolism and arginine biosynthesis. The reduced activities of glucose 6-phosphate dehydrogenase (G6PDH), malate dehydrogenase (MDH), and phosphofructokinase (PFK) suggested that linalool impair the respiratory chain and energy metabolism. Meanwhile, genes encoding the above enzymes were differentially expressed, with pfkB overexpression and zwf and mqo downregulation. Furthermore, molecular docking revealed that linalool can interact with the amino acid residues of G6DPH, MDH and PFK through hydrogen bonds. Therefore, it is hypothesized that the mechanism of linalool against P. fragi may involve cell membrane damage (structure and morphology), disturbance of energy metabolism (TCA cycle, EMP and HMP pathway) and amino acid metabolism (cysteine, glutamic acid and citrulline). These findings contribute to the development of linalool as a promising antibacterial agent in response to the food security challenge.
Collapse
Affiliation(s)
- Jiaxin Cai
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Haiming Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Runqiu Wang
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Qiuping Zhong
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Weijun Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Ming Zhang
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Rongrong He
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Wenxue Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| |
Collapse
|
3
|
Gao T, Fu J, Liu L, Bai J, Lv Y, Zhu Y, Lan Y, Cao X, Feng H, Shen C, Liu S, Zhang S, Guo J. Transcriptome and proteomics conjoint analysis reveal anti-alcoholic liver injury effect of Dianhong Black Tea volatile substances. Food Sci Nutr 2024; 12:313-327. [PMID: 38268900 PMCID: PMC10804116 DOI: 10.1002/fsn3.3763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 01/26/2024] Open
Abstract
Dianhong Black Tea, a fermented tea containing various bioactive ingredients, has been found to have a significant role in alleviating alcoholic liver injury (ALI). One of its main unique components, Dianhong Black Tea volatile substances (DBTVS), may have potential anti-ALI effects. However, its effects and underlying molecular mechanisms are still unknown. In this study, we aimed to investigate the potential of DBTVS as an anti-ALI agent using alcohol-fed rats. We assessed the effect of DBTVS on ALI by analyzing serum transaminase and lipid levels, as well as conducting hematoxylin-eosin and oil red O staining. Additionally, GC-MS was used to detect the components of DBTVS, while transcriptome, proteomics analysis, Western blot, and molecular docking were employed to uncover the underlying mechanisms. Our results demonstrated that DBTVS significantly reduced serum ALT and AST levels and improved lipid metabolism disorders. Moreover, we identified 14 components in DBTVS, with five of them exhibiting strong binding affinity with key proteins. These findings suggested that DBTVS could be a promising agent for the prevention and treatment of ALI. Its potential therapeutic effects may be attributed to its ability to regulate lipid metabolism through the PPAR signaling pathway.
Collapse
Affiliation(s)
- Tinghui Gao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of PharmacyChengdu University of Traditional Chinese MedicineChengduP.R. China
| | - JiaoJiao Fu
- College of Medical TechnologyChengdu University of Traditional Chinese MedicineChengduP.R. China
| | - Lin Liu
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of PharmacyChengdu University of Traditional Chinese MedicineChengduP.R. China
| | - Jing Bai
- College of Medical TechnologyChengdu University of Traditional Chinese MedicineChengduP.R. China
| | - Yangjun Lv
- Hangzhou Tea Research Institute, China CoopHangzhouP.R. China
| | - Yuejin Zhu
- Hangzhou Tea Research Institute, China CoopHangzhouP.R. China
| | - Yu Lan
- Luzhou Laojiao Group Co. Ltd.LuzhouP.R. China
| | | | | | - Caihong Shen
- National Engineering Research Center of Solid‐State BrewingLuzhouP.R. China
| | - Sijing Liu
- College of Medical TechnologyChengdu University of Traditional Chinese MedicineChengduP.R. China
| | - Shikang Zhang
- Hangzhou Tea Research Institute, China CoopHangzhouP.R. China
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of PharmacyChengdu University of Traditional Chinese MedicineChengduP.R. China
- College of Medical TechnologyChengdu University of Traditional Chinese MedicineChengduP.R. China
| |
Collapse
|
4
|
Tan L, Ni Y, Xie Y, Zhang W, Zhao J, Xiao Q, Lu J, Pan Q, Li C, Xu B. Next-generation meat preservation: integrating nano-natural substances to tackle hurdles and opportunities. Crit Rev Food Sci Nutr 2023; 64:12720-12743. [PMID: 37702757 DOI: 10.1080/10408398.2023.2256013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The increasing global meat demand raises concerns regarding the spoilage of meat caused by microbial invasion and oxidative decomposition. Natural substances, as a gift from nature to humanity, possess broad-spectrum bioactivity and have been utilized for meat preservation. However, their limited stability, solubility, and availability hinder their further development. To address this predicament, advanced organic nanocarriers provide an effective shelter for the formation of nano-natural substances (NNS). This review comprehensively presents various natural substances derived from plants, animals, and microorganisms, along with the challenges they face. Subsequently, the potential of organic nanocarriers is explored, highlighting their distinct features and applicability, in addressing these challenges. The review methodically examines the application of NNS in meat preservation, with a focus on their pathways of action and preservation mechanisms. Furthermore, the outlook and future trends for NNS applications in meat preservation are concluded. The theory and practice summary of NNS is expected to serve as a catalyst for advancements that enhance meat security, promote human health, and contribute to sustainable development.
Collapse
Affiliation(s)
- Lijun Tan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yongsheng Ni
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Wendi Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jinsong Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qing Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jingnan Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qiong Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Cong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
5
|
Liao S, Tian L, Qi Q, Hu L, Wang M, Gao C, Cui H, Gai Z, Gong G. Transcriptome Analysis of Protocatechualdehyde against Listeria monocytogenes and Its Effect on Chicken Quality Characteristics. Foods 2023; 12:2625. [PMID: 37444363 DOI: 10.3390/foods12132625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The development of natural antimicrobial agents offers new strategies for food preservation due to the health hazards associated with the spoilage of meat products caused by microbial contamination. In this paper, the inhibitory mechanism of protocatechualdehyde (PCA) on Listeria monocytogenes was described, and its effect on the preservation of cooked chicken breast was evaluated. The results showed that the minimal inhibitory concentration (MIC) of PCA on L. monocytogenes was 0.625 mg/mL. Secondly, PCA destroyed the integrity of the L. monocytogenes cell membrane, which was manifested as a decrease in membrane hyperpolarization, intracellular ATP level, and intracellular pH value. Field emission gun scanning electron microscopy (FEG-SEM) observed a cell membrane rupture. Transcriptome analysis showed that PCA may inhibit cell growth by affecting amino acid, nucleotide metabolism, energy metabolism, and the cell membrane of L. monocytogenes. Additionally, it was discovered that PCA enhanced the color and texture of cooked chicken breast meat while decreasing the level of thiobarbituric acid active substance (TBARS). In conclusion, PCA as a natural antibacterial agent has a certain reference value in extending the shelf life of cooked chicken breast.
Collapse
Affiliation(s)
- Sichen Liao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lu Tian
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qi Qi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lemei Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Minmin Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chang Gao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haoyue Cui
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhongchao Gai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoli Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
6
|
Shen G, Yang L, Lv X, Zhang Y, Hou X, Li M, Zhou M, Pan L, Chen A, Zhang Z. Antibiofilm Activity and Mechanism of Linalool against Food Spoilage Bacillus amyloliquefaciens. Int J Mol Sci 2023; 24:10980. [PMID: 37446158 DOI: 10.3390/ijms241310980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pellicle biofilm-forming bacteria Bacillus amyloliquefaciens are the major spoilage microorganisms of soy products. Due to their inherent resistance to antibiotics and disinfectants, pellicle biofilms formed are difficult to eliminate and represent a threat to food safety. Here, we assessed linalool's ability to prevent the pellicle of two spoilage B. amyloliquefaciens strains. The minimum biofilm inhibitory concentration (MBIC) of linalool against B. amyloliquefaciens DY1a and DY1b was 4 μL/mL and 8 μL/mL, respectively. The MBIC of linalool had a considerable eradication rate of 77.15% and 83.21% on the biofilm of the two strains, respectively. Scanning electron microscopy observations revealed that less wrinkly and thinner pellicle biofilms formed on a medium supplemented with 1/2 MBIC and 1/4 MBIC linalool. Also, linalool inhibited cell motility and the production of extracellular polysaccharides and proteins of the biofilm matrix. Furthermore, linalool exposure reduced the cell surface hydrophobicity, zeta potential, and cell auto-aggregation of B. amyloliquefaciens. Molecular docking analysis demonstrated that linalool interacted strongly with quorum-sensing ComP receptor and biofilm matrix assembly TasA through intermolecular hydrogen bonds, hydrophobic contacts, and van der Waals forces interacting with site residues. Overall, our findings suggest that linalool may be employed as a potential antibiofilm agent to control food spoilage B. amyloliquefaciens.
Collapse
Affiliation(s)
- Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Lu Yang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinyu Lv
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yingfan Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaoyan Hou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Meiliang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Le Pan
- Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
7
|
Overview of omics applications in elucidating the underlying mechanisms of biochemical and biological factors associated with meat safety and nutrition. J Proteomics 2023; 276:104840. [PMID: 36758853 DOI: 10.1016/j.jprot.2023.104840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
Over the years, significant technological discoveries have facilitated the improvement of meat-related research. Recent studies of complex and interactive factors contributing to variations in meat safety are increasingly focused on data-driven omics approaches such as proteomics. This review highlighted omics advances in elucidating the biochemical and biological actions on meat safety. Also, the impacts of the nutritional characteristics of meat and meat products on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers. SIGNIFICANCE OF THE REVIEW: This review highlighted omics advances in elucidating underlying mechanisms of biochemical and biological factors associated with meat safety. Also, the impacts of meat proteins on human health are emphasized. Future perspectives should explore multi-omics and in situ investigations to elucidate the implications in microbiological studies, including nutritional and health-related assessments. Also, creating meat safety assessment and prediction models based on biomarkers of meat safety traits will help to mitigate application constraints, thereby evaluating meat quality more accurately. This could provide a scientific basis for increasing the meat industry's profitability and producing high-quality meat and meat products for consumers.
Collapse
|