1
|
Nie CZ, Che J, Wang J, Huang XH, Qin L. Improvement of flavor and inhibition of accompanying harmful substances in roasted fish by different tea pre-marinades. Food Chem 2025; 479:143781. [PMID: 40086395 DOI: 10.1016/j.foodchem.2025.143781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Flavor compounds and harmful substances are critical factors influencing the quality and safety of roasted fish. This study study investigated the effects of six different tea pre-marinades on the flavor and the formation of harmful compounds in roasted fish. The results indicated that pre-marination with tea significantly improved the flavor of the roasted fish. The volatile compounds in the roasted fish increased notably after the fish was marinated with tea, including aldehydes such as hexanal, ketones such as heptan-2-one, and pyrazines. Additionally, the content of free amino acids was significantly elevated (P < 0.05). Furthermore, pre-marination with green, black, and oolong teas effectively reduces harmful substances, such as acrylamide, heterocyclic amines, and polycyclic aromatic hydrocarbons, in roasted fish. This study provides a theoretical foundation for utilizing plant extracts to produce high-quality and safe roasted fish products.
Collapse
Affiliation(s)
- Cheng-Zhen Nie
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Che
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Ji Wang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xu-Hui Huang
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Lei Qin
- School of Food Science and Technology, State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Guo Z, Feng X, He G, Yang H, Zhong T, Xiao Y, Yu X. Using bioactive compounds to mitigate the formation of typical chemical contaminants generated during the thermal processing of different food matrices. Compr Rev Food Sci Food Saf 2024; 23:e13409. [PMID: 39137003 DOI: 10.1111/1541-4337.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 01/04/2025]
Abstract
With rising consumer awareness of health and wellness, the demand for enhanced food safety is rapidly increasing. The generation of chemical contaminants during the thermal processing of food materials, including polycyclic aromatic hydrocarbons, heterocyclic aromatic amines, and acrylamide happens every day in every kitchen all around the world. Unlike extraneous chemical contaminants (e.g., pesticides, herbicides, and chemical fertilizers), these endogenic chemical contaminants occur during the cooking process and cannot be removed before consumption. Therefore, much effort has been invested in searching for ways to reduce such thermally induced chemical contaminants. Recently, the addition of bioactive compounds has been found to be effective and promising. However, no systematic review of this practical science has been made yet. This review aims to summarize the latest applications of bioactive compounds for the control of chemical contaminants during food thermal processing. The underlying generation mechanisms and the toxic effects of these chemical contaminants are discussed in depth to reveal how and why they are suppressed by the addition of certain bioactive ingredients. Examples of specific bioactive compounds, such as phenolic compounds and organic acids, as well as their application scenarios, are outlined. In the end, outlooks and expectations for future development are provided based on a comprehensive summary and reflection of references.
Collapse
Affiliation(s)
- Zilong Guo
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Guangyun He
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Huanqi Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
3
|
Wang H, Shi B, Wang W, Zhang Y, Cheng KW. Effect of marinating with green tea extract on the safety and sensory profiles of oven-baked oyster. Food Chem 2024; 448:139090. [PMID: 38547714 DOI: 10.1016/j.foodchem.2024.139090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024]
Abstract
Baked oyster is a popular seafood dish around the world. The present study investigated the effect of various concentrations of a green-tea extract (GTE) marinade on the safety and sensory profiles of oysters baked for different durations. The results showed 10 g/L of GTE and 10-min baking time was the optimal combination, as supported by significantly attenuated lipid oxidation (35.29 %) and Nε-(carboxyethyl)lysine (CEL) content (48.51 %) without appreciable negative impact on the sensory or nutritional quality of the oysters. However, high concentrations of the marinade or prolonged baking promoted protein oxidation and Nε-(carboxymethyl)lysine (CML) formation likely through the pro-oxidative action of the GTE phytochemicals. Correlation analysis further revealed the main factors that affected CML, CEL, and fluorescent AGEs generation, respectively. These findings provide theoretical support for the protective effect and mechanism of GTE against quality deterioration of baked oysters and would help broaden the application of GTE in the food industry.
Collapse
Affiliation(s)
- Huaixu Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Baoping Shi
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Weitao Wang
- Earth, Ocean and Atmospheric Sciences Thrust, Function Hub, Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511466, China
| | - Yajie Zhang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Ka-Wing Cheng
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Lu J, Zhang Y, Zhou H, Cai K, Xu B. A review of hazards in meat products: Multiple pathways, hazards and mitigation of polycyclic aromatic hydrocarbons. Food Chem 2024; 445:138718. [PMID: 38364501 DOI: 10.1016/j.foodchem.2024.138718] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are stable carcinogens that are widely distributed in the environment and food, and humans are exposed to PAHs primarily through the respiratory tracts, dermal contact, and dietary intake. Meat products are an essential part of the human diet, and the formation of PAHs during meat processing is unavoidable. Therefore, a comprehensive understanding of PAHs in meat products can be a contribution to the minimization of human exposure dose. The aim of this review is to provide a comprehensive description of the toxicological analysis of PAHs intake and the various production pathways. The distribution of different PAHs in various meat products, including poultry and aquatic products, is analyzed. The discussion focuses on controlling PAHs through the use of endogenous marinades and antioxidants as well as reducing exogenous particulate matter-PAHs attachment. In addition, potential strategies for PAHs reduction and possible directions for future research are proposed.
Collapse
Affiliation(s)
- Jingnan Lu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Yunkai Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Hui Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Kezhou Cai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
5
|
Zhao R, Zhang Y, Chen J, Zhang L, Chen C, Ma G, Shi X. Inhibitory effects of longan seed extract on polycyclic aromatic hydrocarbons formation and muscle oxidation in baked mutton kebabs. Food Chem X 2023; 20:100973. [PMID: 38144775 PMCID: PMC10740070 DOI: 10.1016/j.fochx.2023.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 12/26/2023] Open
Abstract
Longan seeds, rich in phenolic compounds with antioxidant properties, are an underestimated by-product of longan processing. Polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic and mutagenic, are produced during the cooking of meat products at high temperatures. The effects of different concentrations of longan seed extract (LSE, 0.2, 0.6, 1.0 mg/mL) on the formation of PAHs and muscle oxidation in mutton kebabs were investigated. Mutton kebabs were baked at 150, 200, 250 °C for 20 min, respectively, and the contents of PAHs, the degree of lipid and protein oxidation were evaluated. The results showed that LSE exhibited positive effects in inhibiting total PAHs formation (range from 14.9 to 48.8 %), decreasing the thiobarbituric acid reactive substances (TBARS) values (range from 17.1 to 39.1 %), reducing carbonyl content (range from 22.0 to 51.2 %) and increasing sulfhydryl content (range from 18.6 to 51.8 %). This study provided a guidance and potential solution for reducing the content of PAHs and muscle oxidation levels in baked meat.
Collapse
Affiliation(s)
- Ruina Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongsheng Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingjing Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoyuan Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xixiong Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Lee S, Jo K, Jeong SKC, Jeon H, Choi YS, Jung S. Recent strategies for improving the quality of meat products. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:895-911. [PMID: 37969348 PMCID: PMC10640940 DOI: 10.5187/jast.2023.e94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 11/17/2023]
Abstract
Processed meat products play a vital role in our daily dietary intake due to their rich protein content and the inherent convenience they offer. However, they often contain synthetic additives and ingredients that may pose health risks when taken excessively. This review explores strategies to improve meat product quality, focusing on three key approaches: substituting synthetic additives, reducing the ingredients potentially harmful when overconsumed like salt and animal fat, and boosting nutritional value. To replace synthetic additives, natural sources like celery and beet powders, as well as atmospheric cold plasma treatment, have been considered. However, for phosphates, the use of organic alternatives is limited due to the low phosphate content in natural substances. Thus, dietary fiber has been used to replicate phosphate functions by enhancing water retention and emulsion stability in meat products. Reducing the excessive salt and animal fat has garnered attention. Plant polysaccharides interact with water, fat, and proteins, improving gel formation and water retention, and enabling the development of low-salt and low-fat products. Replacing saturated fats with vegetable oils is also an option, but it requires techniques like Pickering emulsion or encapsulation to maintain product quality. These strategies aim to reduce or replace synthetic additives and ingredients that can potentially harm health. Dietary fiber offers numerous health benefits, including gut health improvement, calorie reduction, and blood glucose and lipid level regulation. Natural plant extracts not only enhance oxidative stability but also reduce potential carcinogens as antioxidants. Controlling protein and lipid bioavailability is also considered, especially for specific consumer groups like infants, the elderly, and individuals engaged in physical training with dietary management. Future research should explore the full potential of dietary fiber, encompassing synthetic additive substitution, salt and animal fat reduction, and nutritional enhancement. Additionally, optimal sources and dosages of polysaccharides should be determined, considering their distinct properties in interactions with water, proteins, and fats. This holistic approach holds promise for improving meat product quality with minimal processing.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Hayeon Jeon
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea
Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
7
|
Tian H, Yu J, Li M, Li J, Lu Y, Yu X, Lin S, Zeng X, Xu X, Han M. Effect of curcumin on the formation of polycyclic aromatic hydrocarbons in grilled chicken wings. Food Chem 2023; 414:135561. [PMID: 36827781 DOI: 10.1016/j.foodchem.2023.135561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Organic macromolecules form carcinogenic and toxic substances such as polycyclic aromatic hydrocarbons (PAHs) under high temperature baking. Thus, this study investigated the effects and inhibition pathways of different curcumin concentrations (0.01, 0.05, 0.25, 0.3 mg/g) on seven PAHs in grilled chicken wings. The results demonstrated that curcumin concentrations displayed positive effects in inhibiting the formation of PAHs (16%-72%), increasing the total phenolic content (397.5-1934.4 mg/g) and free radical scavenging activity, and reducing TBARS values (31.15%-47.76%) and fatty acid content. Additionally, PCA and Pearson correlation analyses indicated that lipid oxidation (r = 0.42) and unsaturated fatty acids (r = 0.55) could promote the production of PAHs, while DPPH, ABTS and TPC could counteract their facilitation of PAHs. In conclusion, the addition of appropriate amounts of curcumin before grilling is a feasible strategy to reduce fat oxidation levels and the number of free radicals for the purpose of limiting PAHs content.
Collapse
Affiliation(s)
- Huixin Tian
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Jing Yu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Min Li
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Illumination Industry, Zhengzhou 450001, China
| | - Jing Li
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Yifeng Lu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Xiaobo Yu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Shaoyan Lin
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Xianming Zeng
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China
| | - Minyi Han
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 2100095, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Illumination Industry, Zhengzhou 450001, China; Wens Foodstuff Group Co., Ltd, Yunfu, Guangdong 527400, China.
| |
Collapse
|
8
|
Xu X, Liu X, Zhang J, Liang L, Wen C, Li Y, Shen M, Wu Y, He X, Liu G, Xu X. Formation, migration, derivation, and generation mechanism of polycyclic aromatic hydrocarbons during frying. Food Chem 2023; 425:136485. [PMID: 37276667 DOI: 10.1016/j.foodchem.2023.136485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and lipophilic, which can be found in frying system. This review summarized the formation, migration and derivation for PAHs, hypothesized the possible mechanism for PAHs generation during frying and presented the research prospects. Some factors like high oil consumption, high temperature, long time and oil rich in unsaturated fatty acids promoted the formation of PAHs and the presence of antioxidants inhibited the PAHs formation. The effect of proteins and carbohydrates in foods on the formation of PAHs is inconclusive. The formed PAHs were migrated into food and air. Moreover, some PAHs transformed into more toxic PAHs-derivatives during frying. The generation of PAHs may be related to low-barrier free radical-mediated reaction and the unsaturated hydrocarbons may be precursors of PAHs during frying. In future, the isotope tracer technology and on-line detection may be applied to discover intermediates and provide clues for studying PAHs generation mechanisms.
Collapse
Affiliation(s)
- Xiangxin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mengyu Shen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yinyin Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou 225009, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
9
|
Bulanda S, Janoszka B. Polycyclic Aromatic Hydrocarbons (PAHs) in Roasted Pork Meat and the Effect of Dried Fruits on PAH Content. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4922. [PMID: 36981831 PMCID: PMC10049194 DOI: 10.3390/ijerph20064922] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Diet is one of the main factors affecting human health. The frequent consumption of heat-treated meat has been classified as both directly carcinogenic to humans and as a risk factor, especially in the case of cancers of the gastrointestinal tract. Thermally processed meat may contain harmful muta- and carcinogenic compounds, including polycyclic aromatic hydrocarbons (PAHs). However, there are natural ways to reduce the risk of diet-related cancers by reducing the formation of PAHs in meat. The purpose of this study was to determine changes in PAH levels in pork loin dishes prepared by stuffing the meat with dried fruits (prunes, apricots and cranberries) and baking it in a roasting bag. High-performance liquid chromatography with fluorescence detection (HPLC-FLD) was used to conduct a quantitative analysis of seven PAHs. Recovery results ranged from 61 to 96%. The limit of detection (LOD) was 0.003 to 0.006 ng/g, and the limit of quantification (LOQ) was 0.01 to 0.02 ng/g. Gas chromatography-mass spectrometry (GC-MS/MS) was used to confirm the presence of PAHs in food. The total PAH content of the roasted pork loin was 7.4 ng/g. This concentration decreased by 35%, 48% and 58% when the meat was roasted with apricots, prunes and cranberries, respectively. The cranberries also inhibited the formation of benzo(a)pyrene to the greatest extent. Thermally treating meat stuffed with dry fruits may be a simple and effective way to prepare foods with reduced levels of mutagens and carcinogens belonging to PAHs, and thus reduce the risk of cancer.
Collapse
|