1
|
Yang H, Tao H, Xu C, Song J, Teng C, Pan C, Wei S. Selenium-enriched green tea extracts: chemical constituents and effects on antioxidant and anti-inflammatory factors and four major intestinal flora in mice with intestinal disorders. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40231393 DOI: 10.1002/jsfa.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/06/2025] [Accepted: 02/02/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Selenium-enriched tea represents an ideal source of selenium supplements, yet its effects on mice with intestinal disorders remain under-documented. Therefore, we have carried out relevant research. METHODS We determined the main chemical components of selenium-enriched green tea and evaluated the antioxidant and anti-inflammatory effects of selenium-enriched green tea extract and changes in intestinal flora of antibiotic-induced intestinal disease mice through BALB/c mouse experiments. RESULTS The main chemical components of selenium-enriched green tea and green tea are significantly different. Selenium-enriched green tea is characterized by a high selenium content, with tea polyphenols, flavonoids, tea polysaccharides and catechins being the primary constituents. The results of animal experiments indicate that the extract of green tea rich in selenium increased the content of antioxidant factors in the intestines of mice and reduced the levels of intestinal inflammatory factors. This was also confirmed by mRNA gene expression determination. In addition, selenium-enriched green tea extracts can reduce the weight loss and intestinal pathological damage induced by antibiotics, promote the colonization of Bifidobacterium and Lactobacillus in the intestinal tract of mice and inhibit the growth of Escherichia coli and Enterococcus in the intestinal tract. CONCLUSION Selenium-enriched green tea has high nutritional content. It demonstrates superior potential in alleviating oxidative stress and inflammatory responses caused by intestinal diseases, and plays a role in regulating the intestinal flora. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongbo Yang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Hui Tao
- First Affiliated Hospital of Guizhou Medical University (Guian Hospital), Guiyang, China
| | - Chan Xu
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jieyu Song
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Chunli Teng
- Guizhou Jianande Technology Co. Ltd, Guiyang, China
| | - Canping Pan
- College of Science, China Agricultural University, Beijing, China
| | - Shaofeng Wei
- School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Zou D, Yin XL, Gu HW, Peng ZX, Ding B, Li Z, Hu XC, Long W, Fu H, She Y. Insight into the effect of cultivar and altitude on the identification of EnshiYulu tea grade in untargeted metabolomics analysis. Food Chem 2024; 436:137768. [PMID: 37862999 DOI: 10.1016/j.foodchem.2023.137768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
The accurate identification of tea grade is crucial to the quality control of tea. However, existing methods lack sufficient generalization ability in identifying tea grades due to the effect of temporal and spatial factors. In this study, we analyzed the effect of cultivar and altitude on EnshiYulu (ESYL) tea grades and established a robust model to evaluate their quality. Principal component analysis (PCA) revealed that differences in variety and elevation can mask grade differences. Orthogonal projection to latent structure-discriminant analysis (OPLS-DA) was used for grade identification of samples from different altitudes. For ESYL tea samples above and below 800 m altitude, 75 and 35 grade differentiated metabolites were discovered, with 14 common differentiated metabolites. Based on reconstructed OPLS-DA models, the grades of multi-altitude sources ESYL were discriminated with a rate > 85%. These results demonstrate the potential of a grade discrimination model based on common differential metabolites, which exhibits generalization ability.
Collapse
Affiliation(s)
- Dan Zou
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhi-Xin Peng
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhenshun Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xian-Chun Hu
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
3
|
Sentkowska A, Pyrzynska K. Catechins and Selenium Species-How They React with Each Other. Molecules 2023; 28:5897. [PMID: 37570866 PMCID: PMC10420645 DOI: 10.3390/molecules28155897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The combination of selenium and tea infusion, both with antioxidant properties, has potentially complementary mechanisms of action. Se-enriched tea has been considered as a possible Se supplement and a functional beverage to reduce the health risk of Se deficiency. This work investigated the interactions between plant catechins present in tea infusions and selenium species based on changes in the concentration of both reagents, their stability in aqueous solutions, and the possibilities of selenonanoparticles (SeNPs) formation. Selenium species exhibited instability both alone in their standard solutions and in the presence of studied catechins; selenocystine appeared as the most unstable. The recorded UV-Vis absorption spectra indicated the formation of SeNPs in the binary mixtures of catechins and selenite. SeNPs have also formed with diameters smaller than 100 nm when selenite and selenomethionine were added to tea infusions. This is an advantage from the point of view of potential medical applications.
Collapse
Affiliation(s)
| | - Krystyna Pyrzynska
- Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Sheng X, Huang M, Li T, Li X, Cen S, Li Q, Huang Q, Tang W. Characterization of aroma compounds in Rosa roxburghii Tratt using solvent-assisted flavor evaporation headspace-solid phase microextraction coupled with gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem X 2023; 18:100632. [PMID: 36926312 PMCID: PMC10010976 DOI: 10.1016/j.fochx.2023.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Rosa roxburghii Tratt (RRT) has become popular owing to its high vitamin C content. Volatiles are important factors that affect the quality of RRTs and their processed products. In this study, volatile compounds were extracted using headspace-solid phase microextraction (HS-SPME) and solvent-assisted flavor evaporation (SAFE); 143 volatile compounds were identified by gas chromatography-mass spectrometry (GC-MS), and RRT from different origins were well distinguished based on principal component analysis. 45 odor-active components were identified using gas chromatography-olfactometry (GC-O). Through quantitative descriptive analysis (QDA), there were prominent "grassy" and "tea-like" attributes in RRT. Partial least-squares regression (PLSR) revealed that Longli RRT was greatly related to "tea-like" and "woody" attributes. Among the volatiles identified, alcohols and esters were considered the dominant volatile compounds of RRT, 4-methoxy-2,5-dimethyl-3(2H)-furanone was the most prominent compound. This study enriches the flavor chemistry theory of RRT and provides a scientific basis for optimizing the aroma of RRT and its processed products.
Collapse
Affiliation(s)
- Xiaofang Sheng
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Mingzheng Huang
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| | - Tingting Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Xin Li
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shunyou Cen
- Guizhou Hongcai Junong Investment Co., Ltd., Liupanshui, Guizhou, China
| | - Qinyang Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Qun Huang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weiyuan Tang
- College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China.,College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Ye Y, He J, He Z, Zhang N, Liu X, Zhou J, Cheng S, Cai J. Correction: Ye et al. Evaluation of the Brewing Characteristics, Digestion Profiles, and Neuroprotective Effects of Two Typical Se-Enriched Green Teas. Foods 2022, 11, 2159. Foods 2023; 12:foods12061339. [PMID: 36981279 PMCID: PMC10032558 DOI: 10.3390/foods12061339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Abstract
The authors wish to make the following corrections to their published paper [...]
Collapse
Affiliation(s)
- Yuanyuan Ye
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence: (J.H.); (J.C.)
| | - Zhijun He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Na Zhang
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoqing Liu
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiaojiao Zhou
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, China
- Correspondence: (J.H.); (J.C.)
| |
Collapse
|
6
|
Ye Y, Yan W, Peng L, Zhou J, He J, Zhang N, Cheng S, Cai J. Insights into the key quality components in Se-Enriched green tea and their relationship with Selenium. Food Res Int 2023; 165:112460. [PMID: 36869476 DOI: 10.1016/j.foodres.2023.112460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
Selenium-enriched green tea (Se-GT) is of increasing interest because of its health benefits, but its quality components obtained limited research. In this study, Enshi Se-enriched green tea (ESST, high-Se green tea), Pingli Se-enriched green tea (PLST, low-Se green tea), and Ziyang green tea (ZYGT, common green tea) were subjected to sensory evaluation, chemical analysis, and aroma profiling. Chemical profiles in Se-GT were consistent with the taste attributes of the sensory analysis. 9 volatiles were identified as key odorants of Se-GT based on multivariate analysis. Correlations between Se and quality components were further assessed and highly Se-related compounds contents in these three tea samples were compared. The results showed that most amino acids and non-gallated catechins were highly negatively correlated with Se, while gallated catechins exhibited strong positive correlation with Se. And there were strong and significant associations between the key aroma compounds and Se. Moreover, 11 differential markers were found between Se-GTs and common green tea, including catechin, serine, glycine, threonine, l-theanine, alanine, valine, isoleucine, leucine, histidine, and lysine. These findings provide great potential for quality evaluation of Se-GT.
Collapse
Affiliation(s)
- Yuanyuan Ye
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wei Yan
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Lijun Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, China
| | - Jiaojiao Zhou
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangling He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Na Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
7
|
He J, Wang Z, Wei L, Ye Y, Din ZU, Zhou J, Cong X, Cheng S, Cai J. Electrospray-Assisted Fabrication of Dextran-Whey Protein Isolation Microcapsules for the Encapsulation of Selenium-Enriched Peptide. Foods 2023; 12:foods12051008. [PMID: 36900527 PMCID: PMC10000993 DOI: 10.3390/foods12051008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Selenium-enriched peptide (SP, selenopeptide) is an excellent organic selenium supplement that has attracted increasing attention due to its superior physiological effects. In this study, dextran-whey protein isolation-SP (DX-WPI-SP) microcapsules were fabricated via high-voltage electrospraying technology. The results of preparation process optimization showed that the optimized preparation process parameters were 6% DX (w/v), feeding rate Q = 1 mL/h, voltage U = 15 kV, and receiving distance H = 15 cm. When the content of WPI (w/v) was 4-8%, the average diameter of the as-prepared microcapsules was no more than 45 μm, and the loading rate for SP ranged from ~46% to ~37%. The DX-WPI-SP microcapsules displayed excellent antioxidant capacity. The thermal stability of the microencapsulated SP was improved, which was attributed to the protective effects of the wall materials for SP. The release performance was investigated to disclose the sustained-release capacity of the carrier under different pH values and an in-vitro-simulated digestion environment. The digested microcapsule solution showed negligible influence on the cellular cytotoxicity of Caco-2 cells. Overall, our work provides a facile strategy of electrospraying microcapsules for the functional encapsulation of SP and witnesses a broad prospect that the DX-WPI-SP microcapsules can exhibit great potential in the food processing field.
Collapse
Affiliation(s)
- Jiangling He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhenyu Wang
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lingfeng Wei
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yuanyuan Ye
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zia-ud Din
- Department of Food Science and Nutrition, Women University Swabi, Swabi 23430, Khyber Pakhtunkhawa, Pakistan
| | - Jiaojiao Zhou
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Cong
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jie Cai
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- Correspondence:
| |
Collapse
|
8
|
Ye Y, Yan W, Peng L, He J, Zhang N, Zhou J, Cheng S, Cai J. Minerals and bioactive components profiling in Se-enriched green tea and the pearson correlation with Se. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|