1
|
Wang X, Cui B, Lin H, Pan R, Zeng J, Fang X, Liu Y, Chen ZY, Chen Y, Zhu H. Research Progress in Saltiness Perception and Salty Substitutes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2745-2759. [PMID: 39843245 DOI: 10.1021/acs.jafc.4c10278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Salty taste in foods is a key sensory attribute for appetite enhancement, however, consumption of a high salt diet is associated with a high risk of hypertension, stroke, and heart diseases. To address this issue, the World Health Organization (WHO) has recommended reducing the global per capita salt consumption by 30% by 2025, with adults optimally consuming less than 5 g/day of salt. Therefore, the search for new salty substitutes to reduce salt intake in foods has become a research hotspot. Despite the ongoing endeavors of global research, multiple studies have focused on the application of a single category of salty alternatives or food processing quality (such as preservative effects and process characteristics), and there is still little comprehensive evaluation of these alternatives in terms of nutritional value, health impact, and consumer acceptance in the literature. This review will first outline the urgency of global salt reduction, followed by thorough discussion of salty substitutes and associated mechanisms from the perspective of human salty taste perception. Second, the present review will explore the potential application of salty substitutes and highlight the interaction between taste and odor in foods. Additionally, the potential impacts of salty substitutes on human health will be discussed. The present review will provide a scientific basis for the development of low salt products by food industry.
Collapse
Affiliation(s)
- Xiaojun Wang
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Biyan Cui
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Huiqi Lin
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Rongzeng Pan
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Jia Zeng
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| | - Xiaolei Fang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT 999077, Hong Kong, China
| | - Yanping Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hanyue Zhu
- School of Food Science and Engineering, Foshan University, Foshan 528011, China
| |
Collapse
|
2
|
Ji H, Pu D, Su L, Zhang Q, Yan W, Kong J, Zuo M, Zhang Y. Computational approaches for decoding structure-saltiness enhancement and aroma perception mechanisms of odorants: From machine learning to molecular simulation. Food Res Int 2025; 202:115707. [PMID: 39967096 DOI: 10.1016/j.foodres.2025.115707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/14/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
The unclear relationship between structure and saltiness enhancement limits the development and application of savory odorants. The structure characteristic-saltiness enhancement perception (SEP) mechanisms of savory odorants were investigated by machine learning, molecular docking, and site-directed mutagenesis simulations. The XGBoost model (R2 = 0.96) showed better prediction on the maximum saltiness-enhancement ability of odorants based on their structures. The important features of the odorants contributing to SEP were analyzed by Shapley additive explanations (SHAP). Results showed that phenyl and aldehyde groups had significant positive contributions to SEP, with SHAP values of + 2.94 and + 0.74, respectively. Molecular docking and site-directed mutagenesis simulations elucidated the interaction region, forces, and key sites between savory odorants and olfactory receptors. Results showed TM3, TM5 and TM6 were the main interaction regions of the savory odorants prioritize binding with OR1A1 and OR1D2, resulting in the characteristic aromas. Hydrogen bonding and hydrophobic interactions were the key driving forces. Phe203, Asn109, and Asn155 of OR1A1 were partially important residues involved in the interactions with savory odorants. These findings presented a quick screening approach for savory odorants and revealed their SEP mechanism, providing theoretical guidance to facilitate the application of odor-induced salt reduction in food industry.
Collapse
Affiliation(s)
- Huizhuo Ji
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China
| | - Dandan Pu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Key Laboratory of Aroma Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Lijun Su
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Qingchuan Zhang
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Wenjing Yan
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Jianlei Kong
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zuo
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China; School of Information, Beijing Wuzi University, Beijing 101126, China.
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048, China; Key Laboratory of Aroma Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China.
| |
Collapse
|
3
|
Pu D, Cao B, Xu Z, Zhang L, Meng R, Chen J, Sun B, Zhang Y. Decoding of the enhancement of saltiness perception by aroma-active compounds during Hunan Larou (smoke-cured bacon) oral processing. Food Chem 2025; 463:141029. [PMID: 39241428 DOI: 10.1016/j.foodchem.2024.141029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/02/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The enhancement of saltiness induced by odrants perceived from the retronasal cavity during Larou oral processing was analyzed. During the oral processing of Xiangtan Larou, the smoky attribute was the dominant when chewing 0-15 times, followed by the savory (15-24 times) and meaty (24-42 times). Partial least squares analysis predicted 33 aroma compounds from the retronasal cavity significantly (p < 0.05) contributing to the aroma perception. A total of 12 aroma compounds with saltiness-enhancement ability were confirmed by odorant-NaCl mixture model experiments. Results revealed that 2-methoxy-4-vinylphenol (1.00-1000.00 μg/L) had the strongest enhancing effect on saltiness at NaCl (2969.85 mg/L), followed by diallyl sulfide (0.156-2.50 μg/L), 2,5-dimethylthiophene (0.156-50.00 μg/L), 2,6-dimethylphenol (1.00-100.00 μg/L), 2,5-dimethylpyrazine (0.391-50.00 μg/L), and 2,3-butanedione (0.50-100.0 μg/L). The sulfur-containing, nitrogen-containing, and phenolic odorants with savory, roasty, sulfide, meaty or smoky, attributes showed the better ability in saltiness enhancement.
Collapse
Affiliation(s)
- Dandan Pu
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Boya Cao
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Zikang Xu
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Lili Zhang
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Ruixing Meng
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Jiahui Chen
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China
| | - Baoguo Sun
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Yuyu Zhang
- China Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China.
| |
Collapse
|
4
|
Ji H, Pu D, Yan W, Kong J, Zhang Q, Su L, Lu Z, Chen H, Zuo M, Zhang Y. Effectively saltiness enhanced odorants screening and prediction by database establish, sensory evaluation and deep learning method. Food Chem 2024; 467:142307. [PMID: 39637666 DOI: 10.1016/j.foodchem.2024.142307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Odor-taste interaction has gained success in enhancing saltiness perception. This work aimed to provide candidate odorants for saltiness enhancement. Volatile compounds and their frequencies in salty foods were systematically analyzed. The compounds with higher frequency were incorporated into the savory aroma compounds database. The saltiness enhancement concentrations of representative aroma compounds at the NaCl solution (3.00 g/L) were detected by sensory evaluation. SELF-referencing Embedded Strings-based representation leaning and graph attention network combined with Backpropagation Neural Network classifier was utilized to predict the saltiness-enhancing ability of odorants. Results showed that ketones, pyrazine and sulfur-containing compounds showed higher saltiness-enhancing ability. Mushroom and fatty attributes contributed to the saltiness-enhancing ability of aroma compounds. Deep learning model showed excellent generalization ability and accuracy (95.93 %), which provided rapid screening method for selecting savory aroma compounds. This study would provide new pathways for food industry to achieve salt reduction goals.
Collapse
Affiliation(s)
- Huizhuo Ji
- China Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Pu
- China Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China
| | - Wenjing Yan
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Jianlei Kong
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Qingchuan Zhang
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Lijun Su
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Zhe Lu
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Hefei Chen
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zuo
- National Engineering Research Center for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China; School of Information, Beijing Wuzi University, Beijing 101126, China.
| | - Yuyu Zhang
- China Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China.
| |
Collapse
|
5
|
Zheng Y, Sun Y, Zhu Y, Wang W, Blank I, Liu S, Zhang Y, Liu Y, Liu Y. Key aroma compounds associated with umami perception of MSG in fried Takifugu obscurus liver. Food Res Int 2024; 196:114954. [PMID: 39614464 DOI: 10.1016/j.foodres.2024.114954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 12/01/2024]
Abstract
Monosodium glutamate (MSG) is a basic representative of umami taste, but it exerts adverse effects as reported in several studies. Enhancing umami perception through aroma-taste interactions is a potentially useful approach as a flavor enhancer to reduce future MSG intake. We identified the aroma compounds in fried Takifugu obscurus liver, then studied the effect of aroma compounds on perceived umami taste using the sensomics approach. A total of 117 volatile compounds were identified from the fried liver. Thereinto, 30 volatile compounds related to five basic tastes were detected by gas chromatography/olfactometry-associated taste analysis. Aroma compounds associated umami, sweet and salty perception in the fried Takifugu obscurus liver showed the potential to enhance umami perception of MSG solutions. Three aldehydes, i.e. heptanal, (Z)-4-heptenal and 2-methylbutanal, significantly enhanced the umami intensity perception of an MSG solution (p < 0.05). The use of aroma compounds to enhance umami perception is considered as a promising tool, further broadening the research area of umami science for application as flavor enhancers in the food industry. In addition, this study also provides an insight into revealing aroma-taste interaction.
Collapse
Affiliation(s)
- Yuqian Zheng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yichen Sun
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Imre Blank
- Zhejiang Yiming Food Co., LTD, Jiuting Center Huting North Street No.199, Shanghai 201600, China
| | - Shi Liu
- Suqian Product Quality, Supervision and Testing Institute, Suqian 223800, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Ye Liu
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Bi Y, Liang L, Qiao K, Luo J, Liu X, Sun B, Zhang Y. A comprehensive review of plant-derived salt substitutes: Classification, mechanism, and application. Food Res Int 2024; 194:114880. [PMID: 39232518 DOI: 10.1016/j.foodres.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
The diseases caused by excessive sodium intake derived from NaCl consumption have attracted widespread attention worldwide, and many researchers are committed to finding suitable ways to reduce sodium intake during the dietary process. Salt substitute is considered an effective way to reduce sodium intake by replacing all/part of NaCl in food without reducing the saltiness while minimizing the impact on the taste and acceptability of the food. Plant-derived natural ingredients are generally considered safe and reliable, and extensive research has shown that certain plant extracts or specific components are effective salt substitutes, which can also give food additional health benefits. However, these plant-derived salt substitutes (PSS) have not been systematically recognized by the public and have not been well adopted in the food industry. Therefore, a comprehensive review of PSS, including its material basis, flavor characteristics, and taste mechanism is helpful for a deeper understanding of PSS, accelerating its research and development, and promoting its application.
Collapse
Affiliation(s)
- Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Luo
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xialei Liu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
7
|
Sakai K, Okada M, Yamaguchi S. Umami and saltiness enhancements of vegetable soup by enzyme-produced glutamic acid and branched-chain amino acids. Front Nutr 2024; 11:1436113. [PMID: 39224182 PMCID: PMC11368061 DOI: 10.3389/fnut.2024.1436113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction One major challenge of reducing salt content in food is the risk of the overall taste becoming bland. Enhancing saltiness is an effective strategy for salt reduction, and the development of salt-reduced foods using these saltiness-enhancing flavorants as food additives is underway. However, an increasing number of consumers demand a reduction in additives in clean-label foods. Objective Enzyme processing of food is an attractive strategy for developing clean-label foods because enzymes are not considered additives. We aimed to improve the saltiness and umami intensity of vegetable soups by enzyme treatment while meeting clean-label requirements. We first optimized the enzymatic reaction conditions of a protease and glutaminase blend and then investigated the synergistic effects of this enzyme blend on the taste of vegetable soup. Results Sensory evaluations indicated that the reaction products (e.g., protein hydrolysates or amino acids) could enhance the umami, kokumi, and saltiness intensity of vegetable soup supplemented with 0.5% NaCl. Notably, the saltiness intensity ratio of the enzyme-treated soup with 0.50, 0.45, and 0.40% NaCl were increased by 1.31-, 1.16-, and 0.99-fold, respectively, when this ratio for the control soup with 0.50% NaCl was set to 1.0. This indicates a 20% salt reduction rate can be achieved by enzyme treatment. Moreover, we found that these enhancements were synergically caused by enzyme-produced glutamic acid and branched-chain amino acids. Conclusion Our findings suggest that using enzyme blends of bacterial and fungal proteases and glutaminase is an effective approach to enhancing the saltiness levels of vegetable soups while meeting clean-label requirements.
Collapse
Affiliation(s)
- Kiyota Sakai
- Innovation Center, Amano Enzyme Inc., Kakamigahara, Japan
| | | | | |
Collapse
|
8
|
Shi J, Xiao N, Zhang Q, Tian Z, Li M, Shi W. Evaluation of aroma characteristics of Penaeus vannamei with different drying methods using HS-SPME-GC-MS, MMSE-GC-MS, and sensory evaluation. Food Chem 2024; 449:138957. [PMID: 38608600 DOI: 10.1016/j.foodchem.2024.138957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
The effects of microwave drying (MD), hot air drying (HAD), vacuum hot air drying (VD), and vacuum freeze drying (VFD) on the volatile profiles of Penaeus vannamei were investigated. A total of 89 and 94 volatile compounds were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and monolithic material sorptive extraction gas chromatography-mass spectrometry (MMSE-GC-MS), respectively. Orthogonal partial least squares-discriminant analysis (OPLS-DA) and variable influence on projection (VIP) models were utilized to select characteristic volatiles and key marker compounds (e.g., octanal, 1-octen-3-ol, 2-methyl-butanal, 2-ethyl-furan, and trimethyl-pyrazine) to discriminate among four drying methods. Based on synthesis of odor descriptions and sensory evaluation, it was found that P. vannamei via MD, HAD, and VD greatly reduced the fishy and generated roasted, fatty, and smoked odors. This study systematically analyzed the aroma characteristics of four traditional dried P. vannamei products, which may provide theoretical guidance for industrial production.
Collapse
Affiliation(s)
- Jian Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihang Tian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyuan Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
9
|
Barba C, Angós I, Maté JI, Cornejo A. Effects of polyols at low concentration on the release of sweet aroma compounds in model soda beverages. Food Chem X 2024; 22:101440. [PMID: 38756467 PMCID: PMC11096819 DOI: 10.1016/j.fochx.2024.101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
This study investigated the effect of polyols erythritol, d-mannitol, and maltitol on the volatility of aroma compounds γ-butyrolactone, 3-methyl-1-butanol, and 2-phenylethanol in aqueous solution. Headspace solid-phase microextraction/gas chromatography and diffusion-ordered nuclear magnetic resonance techniques were used to obtain information on aroma-food matrix interaction. Results demonstrated that adding polyols at final low concentrations of 5% or 10% (w/w) to an aqueous solution of 2-phenylethanol reduced the release of vapor-phase aromas, except in the case of 3-methyl-1-butanol, which was not affected by the presence of polyols in the liquid matrix. Polyols also reduced the diffusion coefficients of all three aroma compounds, probably due to friction between the molecules. At low polyol concentrations, aroma compound volatility and diffusion coefficient values were altered compared to those of aromas released from pure water. This observation is related to the physicochemical properties of the aroma compounds. These insights may help guide the use of the combination of aroma compounds and polyols in the formulation of sugar-free and reduced-sugar beverages. Chemical compounds γ-butyrolactone (PubChem CID: 7302), 3-methyl-1-butanol (PubChem CID: 31260), 2-phenylethanol (PubChem CID: 6054), erythritol (PubChem CID: 222285), d-mannitol (PubChem CID: 6251), maltitol (PubChem CID: 493591).
Collapse
Affiliation(s)
- Carmen Barba
- Institute for Innovation & Sustainable Food Chain Development (ISFOOD), Spain
| | - Ignacio Angós
- Institute for Innovation & Sustainable Food Chain Development (ISFOOD), Spain
| | - Juan Ignacio Maté
- Institute for Innovation & Sustainable Food Chain Development (ISFOOD), Spain
| | - Alfonso Cornejo
- Institute for Advanced Materials and Mathematics (INAMAT), Public University of Navarre, Campus de Arrosadía, 31006 Pamplona, Spain
| |
Collapse
|
10
|
Segura-Borrego MP, Ubeda C, Pastor O, Callejón RM, Morales ML. Could the aroma of spices produce a cross-modal enhancement of food saltiness and contribute to reducing salt intake? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3894-3901. [PMID: 38308484 DOI: 10.1002/jsfa.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND As a result of its correlation with cardiovascular diseases, salt intake must be reduced. According to multi-sensory integration, aroma plays an important role in saltiness enhancement; this could enable a food's salt content to be reduced without losing acceptance. We therefore studied the effect of three spices, Curcuma longa, Laurus nobilis L. and Petroselinum crispum L., on saltiness enhancement through sensory tests on consumers. This was followed by olfactometric analysis with the aim of relating the effect to the spices' aromatic composition. RESULTS According to the odour-induced salty taste enhancement (OISE) mean values, bay leaf and turmeric had the highest effect on saltiness enhancement, at a similar level to dry-cured ham aroma, wherwas parsley had a significantly lower OISE value. Only one odour-active compound (OAC), eugenol, showed a direct correlation with the spices' OISE values. Turmeric primarily had OACs with sweet aroma, whereas bay leaf had more OACs belonging to the spicy-aroma category. CONCLUSION The three spices, turmeric, bay leaf and parsley, investigated in the present study appear to enhance the salty taste of mashed potato with a low salt content. The results suggest that an interaction effect among OACs with different aromatic ranges may exist. Therefore, when the global OAC modified frequency value, grouped according to aroma range, was considered, the sweet range appears to counteract the effect of the spicy aroma on saltiness. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- M Pilar Segura-Borrego
- Área de Nutrición y Bromatología, Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España
| | - Cristina Ubeda
- Área de Nutrición y Bromatología, Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España
| | - Olga Pastor
- Área de Nutrición y Bromatología, Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España
| | - Raquel M Callejón
- Área de Nutrición y Bromatología, Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España
| | - M Lourdes Morales
- Área de Nutrición y Bromatología, Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, España
| |
Collapse
|
11
|
Chen YP, Wang M, Fang X, Liya A, Zhang H, Blank I, Zhu H, Liu Y. Odorants Identified in Chinese Dry-Cured Ham Contribute to Salty Taste Enhancement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:613-624. [PMID: 38156454 DOI: 10.1021/acs.jafc.3c05848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Jinhua dry-cured ham (JDH) is a traditional fermented Chinese meat product. We studied the dynamic sensory and emotional profiles of JDHs obtained by five preparation methods and the corresponding release of sodium ions (Na+), potassium ions (K+), and volatile organic compounds (VOCs) during oral processing. The VOCs with salty taste enhancement abilities were screened based on the correlations of VOCs with salty flavor and concentration of Na and K ions with salty flavor. A trained sensory panel evaluated the saltiness enhancements of selected VOCs by using static and dynamic sensory methods. The results revealed that Na+, K+, and selected VOCs were mainly released during 0-10 s of the chewing process. The release of Na+ and K+ in JDH residue samples exhibited consistently decreasing trends, while in saliva, their concentrations increased. The VOCs showing a high correlation with Na+ and K+ and salty flavor have saltiness enhancement abilities in both NaCl solutions and NaCl + MSG mixtures. Odor-induced saltiness was pronounced at low salt concentrations (0.2% NaCl). The investigation demonstrated 16 VOCs exhibiting saltiness enhancement abilities, including 4 pyrazines, 5 acids, 4 sulfur-containing compounds, and 3 other compounds. The sensory evaluation suggested pyrazines and sulfur-containing compounds as good saltiness enhancers. 2-Furfuryl mercaptan significantly enhanced the salty sensation in the NaCl + MSG solutions when compared with MSG alone (p < 0.05). This research provides evidence that certain odorants identified in JDHs exhibit salty-enhancing properties, indicating their potential for salt reduction at the industrial level.
Collapse
Affiliation(s)
- Yan Ping Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengni Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Fang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - A Liya
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haihua Zhang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Imre Blank
- Zhejiang Yiming Food Co., Ltd., Jiuting Center, Huting North Street No. 199, Shanghai 201600, China
| | - Hanyue Zhu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, Guangdong, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Chen Y, Liu Y, Feng X. Food Perception: Taste, Smell and Flavour. Foods 2023; 12:3628. [PMID: 37835281 PMCID: PMC10572903 DOI: 10.3390/foods12193628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Flavor is the most important sensory quality in food [...].
Collapse
Affiliation(s)
- Yanping Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA
| |
Collapse
|
13
|
Study on the taste active compounds in Douchi using metabolomics method. Food Chem 2023; 412:135343. [PMID: 36701969 DOI: 10.1016/j.foodchem.2022.135343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Douchi is a traditional famous seasoning in China. This study adopted electronic tongue and metabolomics to analyze the taste characteristics and taste active compounds of 12 samples from three most famous types of Douchi (Liuyang Douchi, Yangjiang Douchi, Yongchuan Douchi). Thirty-six differential metabolites mainly enriched from the arginine biosynthesis were identified among these Douchis. Umami and bitterness are considered as two taste that bring positive and negative perceptions for Douchi. The succinic acid was found to be responsible for the umami in LY, YJ and YC Douchi, with the TAVs of 2054, 643, 174, respectively, rather than the glutamic acid and aspartic acid. The leucine was identified as the main metabolite for bitterness, with the TAVs of 9, 9, 7 respectively. KEGG enrichment analysis found that the umami, sourness and saltiness might be related to alanine, aspartate and glutamate metabolism and the bitterness might be related to aminoacyl-tRNA biosynthesis pathway.
Collapse
|
14
|
Role of Aromatic Herbs and Spices in Salty Perception of Patients with Hyposmia. Nutrients 2022; 14:nu14234976. [PMID: 36501005 PMCID: PMC9740803 DOI: 10.3390/nu14234976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Herbs and spices represent a possibility for the improvement of anosmia and ageusia. In this work we evaluated the role of Mediterranean aromatic herbs and spices in the salty taste perception of patients with hyposmia compared to healthy controls. To this goal, the salty taste perception in response to pure salt and different types of commercial flavored sea salt was assessed in patients with hyposmia, with or without a post-acute coronavirus syndrome, and healthy controls. Myrtle berries and leaves, a mixture of Mediterranean herbs and plants such as helichrysum, rosemary, liquorice, fennel seeds and myrtle leaves, oranges and saffron were used as salt flavoring ingredients. Differences in gustatory perception between 57 patients with hyposmia and 91 controls were evaluated considering the rate of the gustatory dimensions of pleasantness, intensity, and familiarity, using a 7-point hedonic Likert-type scale. At a dose of 0.04 g/mL, saline solutions of flavored salts, with an average 15% less NaCl, were perceived by patients with hyposmia as equally intense but less familiar than pure salt solution, with similar scores in the pleasantness dimension. Our study highlighted the central role of Mediterranean aromatic plants in the enhancement of salty perception in patients with hyposmia.
Collapse
|