1
|
Chadwick M, Carvalho LG, Vanegas C, Dimartino S. A Comparative Review of Alternative Fucoidan Extraction Techniques from Seaweed. Mar Drugs 2025; 23:27. [PMID: 39852529 PMCID: PMC11766506 DOI: 10.3390/md23010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Fucoidan is a sulfated polysaccharide found in brown seaweed. Due to its reported biological activities, including antiviral, antibacterial and anti-inflammatory activities, it has garnered significant attention for potential biomedical applications. However, the direct relationship between fucoidan extracts' chemical structures and bioactivities is unclear, making it extremely challenging to predict whether an extract will possess a given bioactivity. This relationship is further complicated by a lack of uniformity in the recent literature in terms of the assessment and reporting of extract properties, yield and chemical composition (e.g., sulfate, fucose, uronic acid and monosaccharide contents). These inconsistencies pose significant challenges when directly comparing extraction techniques across studies. This review collected data on extract contents and properties from a selection of available studies. Where information was unavailable directly, efforts were made to extrapolate data. This approach enabled a comprehensive examination of the correlation between extraction techniques and the characteristics of the resulting extracts. A holistic framework is presented for the selection of fucoidan extraction methods, outlining key heuristics to consider when capturing the broader context of a seaweed bioprocess. Future work should focus on developing knowledge within these heuristic categories, such as the creation of technoeconomic models of each extraction process. This framework should allow for a robust extraction selection process that integrates process scale, cost and constraints into decision making. Key quality attributes for biologically active fucoidan are proposed, and areas for future research are identified, such as studies for specific bioactivities aimed at elucidating fucoidan's mechanism of action. This review also sets out future work required to standardize the reporting of fucoidan extract data. Standardization could positively enhance the quality and depth of data on fucoidan extracts, enabling the relationships between physical, chemical and bioactive properties to be identified. Recommendations on best practices for the production of high-quality fucoidan with desirable yield, characteristics and bioactivity are highlighted.
Collapse
Affiliation(s)
- Matthew Chadwick
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK;
| | - Loïc G. Carvalho
- BioMara Ltd., 83 Princes Street, Edinburgh EH2 2ER, UK; (L.G.C.)
| | - Carlos Vanegas
- BioMara Ltd., 83 Princes Street, Edinburgh EH2 2ER, UK; (L.G.C.)
| | - Simone Dimartino
- Institute for Bioengineering, The School of Engineering, The University of Edinburgh, Edinburgh EH9 3DW, UK;
| |
Collapse
|
2
|
Jiang Y, Zhao Y, Liu Z, Fang JKH, Lai KP, Li R. Roles and mechanisms of fucoidan against dermatitis: A review. Int J Biol Macromol 2024; 279:135268. [PMID: 39233164 DOI: 10.1016/j.ijbiomac.2024.135268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Fucoidan is a sulfate-containing polysaccharide derived from the cell walls of brown algae and marine invertebrates. Fucoidan is widely used for the treatment of various diseases owing to its various biological activities. Dermatitis is an inflammatory reaction that affects the skin. The primary clinical manifestations include atopic dermatitis (AD or eczema) and various subtypes of contact dermatitis. The treatment of dermatitis primarily improves symptoms and reduces inflammation. However, owing to individual variations, some patients have a poor prognosis or symptom recurrence after conventional treatment. Owing to the excellent anti-allergic and anti-inflammatory activities of the low cost nature compound fucoidan, its therapeutic effect in inflammatory diseases has recently attracted the attention of researchers. This article summarizes and analyzes the advantages and pharmacological mechanisms of fucoidan against dermatitis to provide a reference for the selection of drugs for the treatment of dermatitis.
Collapse
Affiliation(s)
- Yingqi Jiang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Yin Zhao
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Zhuoqing Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China.
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China.
| |
Collapse
|
3
|
Saravana PS, Karuppusamy S, Rai DK, Wanigasekara J, Curtin J, Tiwari BK. Elimination of Ethanol for the Production of Fucoidans from Brown Seaweeds: Characterization and Bioactivities. Mar Drugs 2024; 22:493. [PMID: 39590773 PMCID: PMC11595460 DOI: 10.3390/md22110493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Fucoidan, a sulphated polysaccharide from brown seaweed composed of several monosaccharides, has been stated to have several bioactive properties such as antioxidant, antiviral, anticancer, antithrombic, anti-inflammatory, and immunomodulatory effects. This paper provides research findings on green extraction methods, structural analysis of fucoidan, and its associated bioactivities. Fucoidans from brown seaweeds, Fucus vesiculosus and Ascophyllum nodosum, were extracted using green solvents such as citric acid (CA) followed by MWCO (molecular weight cut-off) filtration to obtain high-purity polysaccharides. The presence of functional groups typical to fucoidans, namely, fucose, sulfate, and glycosidic bonds, in the extracts were confirmed through the data obtained from FTIR (Fourier-transform infrared spectroscopy), TGA (thermogravimetric analysis), DSC (differential scanning calorimetry), and solid-state CP-MAS (cross-polarization magic angle spinning) analysis. The MWCO analysis identified that the >300 kDa fraction can have better content of fucoidan (FV-CA 79.16%, FV-HCl 63.59%, AN-CA 79.21%, AN-HCl 80.70%) than the conventional extraction process. Furthermore, the >300 kDa fraction showed significantly higher antioxidant activities compared to crude fucoidan extracts. Crude fucoidan extracts showed significant inhibition of cell viability in human lung (A459 lung carcinoma cells) and colorectal adenocarcinoma (Caco-2) cells at higher concentrations. The fucoidan extracted with green solvents and avoiding alcohol-based precipitation has substantial antioxidant/antitumor action, so, due to this activity, it can be employed as functional foods in food applications.
Collapse
Affiliation(s)
- Periaswamy Sivagnanam Saravana
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, D15 DY05 Dublin, Ireland;
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Shanmugapriya Karuppusamy
- School of Biosystems and Food Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Dilip K. Rai
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, D15 DY05 Dublin, Ireland;
| | - Janith Wanigasekara
- School of Food Science and Environmental Health, Technological University Dublin, D07 ADY7 Dublin, Ireland; (J.W.); (J.C.)
| | - James Curtin
- School of Food Science and Environmental Health, Technological University Dublin, D07 ADY7 Dublin, Ireland; (J.W.); (J.C.)
| | - Brijesh K. Tiwari
- Department of Food Chemistry & Technology, Teagasc Food Research Centre, D15 DY05 Dublin, Ireland;
| |
Collapse
|
4
|
Yuan M, Wang J, Geng L, Wu N, Yang Y, Zhang Q. A review: Structure, bioactivity and potential application of algal polysaccharides in skin aging care and therapy. Int J Biol Macromol 2024; 272:132846. [PMID: 38834111 DOI: 10.1016/j.ijbiomac.2024.132846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Skin is the first barrier of body which stands guard for defending aggressive pathogens and environmental pressures all the time. Cutaneous metabolism changes in harmful exposure, following with skin dysfunctions and diseases. Lots of researches have reported that polysaccharides extracted from seaweeds exhibited multidimensional bioactivities in dealing with skin disorder. However, few literature systematically reviews them. The aim of the present paper is to summarize structure, bioactivities and structure-function relationship of algal polysaccharides acting on skin. Algal polysaccharides show antioxidant, immunomodulating, hydration regulating, anti-melanogenesis and extracellular matrix (ECM) regulating abilities via multipath ways in skin. These bioactivities are determined by various parameters, including seaweed species, molecular weight, monosaccharides composition and substitute groups. In addition, potential usages of algae-derived polysaccharides in skin care and therapy are also elaborated. Algal polysaccharides are potential ingredients in formulation that providing anti-aging efficacy for skin.
Collapse
Affiliation(s)
- Mengyao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China.
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Yue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 168 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
5
|
Zayed A, Al-Saedi DA, Mensah EO, Kanwugu ON, Adadi P, Ulber R. Fucoidan's Molecular Targets: A Comprehensive Review of Its Unique and Multiple Targets Accounting for Promising Bioactivities Supported by In Silico Studies. Mar Drugs 2023; 22:29. [PMID: 38248653 PMCID: PMC10820140 DOI: 10.3390/md22010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Fucoidan is a class of multifunctional polysaccharides derived from marine organisms. Its unique and diversified physicochemical and chemical properties have qualified them for potential and promising pharmacological uses in human diseases, including inflammation, tumors, immunity disorders, kidney diseases, and diabetes. Physicochemical and chemical properties are the main contributors to these bioactivities. The previous literature has attributed such activities to its ability to target key enzymes and receptors involved in potential disease pathways, either directly or indirectly, where the anionic sulfate ester groups are mainly involved in these interactions. These findings also confirm the advantageous pharmacological uses of sulfated versus non-sulfated polysaccharides. The current review shall highlight the molecular targets of fucoidans, especially enzymes, and the subsequent responses via either the upregulation or downregulation of mediators' expression in various tissue abnormalities. In addition, in silico studies will be applied to support the previous findings and show the significant contributors. The current review may help in understanding the molecular mechanisms of fucoidan. Also, the findings of this review may be utilized in the design of specific oligomers inspired by fucoidan with the purpose of treating life-threatening human diseases effectively.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, College of Pharmacy, Tanta University, El-Guish Street (Medical Campus), Tanta 31527, Egypt
| | - Dalal A. Al-Saedi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Emmanuel Ofosu Mensah
- Faculty of Ecotechnology, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia;
| | - Osman Nabayire Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, Yekaterinburg 620002, Russia;
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
6
|
Wang L, Wang L, Yan C, Fu Y, Yang JF, Ma J, Song S. Structural characterization of a fucoidan from Ascophyllum nodosum and comparison of its protective effect against cellular oxidative stress with its analogues. Int J Biol Macromol 2023; 239:124295. [PMID: 37011755 DOI: 10.1016/j.ijbiomac.2023.124295] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/05/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
In the present study, a fucoidan fraction (ANP-3) was isolated from Ascophyllum nodosum, and the combined application of desulfation, methylation, HPGPC, HPLC-MSn, FT-IR, GC-MS, NMR, and Congo red test elucidated ANP-3 (124.5 kDa) as a triple-helical sulfated polysaccharide constituted by →2)-α-Fucp3S-(1→, →3)-α-Fucp2S4S-(1→, →3,6)-β-Galp4S-(1→, →3,6)-β-Manp4S-(1→, →3,6)-β-Galp4S-(1→,→6)-β-Manp-(1→, →3)-β-Galp-(1→, α-Fucp-(1→, and α-GlcAp-(1→ residues. To better understand the relationship between the fucoidan structure of A. nodosum and protective effects against oxidative stress, two fractions ANP-6 and ANP-7 were used as contrast. ANP-6 (63.2 kDa) exhibited no protective effect against H2O2-induced oxidative stress. However, ANP-3 and ANP-7 with the same molecular weight of 124.5 kDa could protect against oxidative stress by down-regulating reactive oxygen species (ROS) and malondialdehyde (MDA) levels and up-regulating total antioxidant capability (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities. Then metabolites analysis indicated that arginine biosynthesis and phenylalanine, tyrosine, and tryptophan biosynthesis metabolic pathways and metabolic biomarkers such as betaine were involved in the effects of ANP-3 and ANP-7. The better protective effect of ANP-7 compared to that of ANP-3 could be attributed to its relatively higher molecular weight, sulfate substitution and →6)-β-Galp-(1→ content, and lower uronic acid content.
Collapse
Affiliation(s)
- Lilong Wang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Linlin Wang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunhong Yan
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, PR China
| | - Yinghuan Fu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, PR China
| | - Jing-Feng Yang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, PR China
| | - Jiale Ma
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, PR China.
| |
Collapse
|
7
|
Flórez-Fernández N, Vaamonde-García C, Torres MD, Buján M, Muíños A, Muiños A, Lamas-Vázquez MJ, Meijide-Faílde R, Blanco FJ, Domínguez H. Relevance of the Extraction Stage on the Anti-Inflammatory Action of Fucoidans. Pharmaceutics 2023; 15:pharmaceutics15030808. [PMID: 36986669 PMCID: PMC10058023 DOI: 10.3390/pharmaceutics15030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The anti-inflammatory action of fucoidans is well known, based on both in vitro and some in vivo studies. The other biological properties of these compounds, their lack of toxicity, and the possibility of obtaining them from a widely distributed and renewable source, makes them attractive novel bioactives. However, fucoidans’ heterogeneity and variability in composition, structure, and properties depending on seaweed species, biotic and abiotic factors and processing conditions, especially during extraction and purification stages, make it difficult for standardization. A review of the available technologies, including those based on intensification strategies, and their influence on fucoidan composition, structure, and anti-inflammatory potential of crude extracts and fractions is presented.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Maria Dolores Torres
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - María J. Lamas-Vázquez
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
8
|
Dörschmann P, Kopplin G, Roider J, Klettner A. Interaction of High-Molecular Weight Fucoidan from Laminaria hyperborea with Natural Functions of the Retinal Pigment Epithelium. Int J Mol Sci 2023; 24:2232. [PMID: 36768552 PMCID: PMC9917243 DOI: 10.3390/ijms24032232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Fucoidans are polysaccharides and constituents of cell walls of brown algae such as Laminaria hyperborea (LH). They exhibit promising effects regarding age-related macular degeneration (AMD). However, the safety of this compound needs to be assured. The focus of this study lies on influences of an LH fucoidan on the retinal pigment epithelium (RPE). The high-molecular weight LH fucoidan Fuc1 was applied to primary porcine RPE cells, and a tetrazolium (MTT) cell viability assay was conducted. Further tests included a scratch assay to measure wound healing, Western blotting to measure expression of retinal pigment epithelium-specific 65 kDa protein (RPE65), as well as immunofluorescence to measure uptake of opsonized fluorescence beads into RPE cells. Lipopolysaccharide was used to proinflammatorily activate the RPE, and interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion was measured. RPE/choroid cultures were used to assess vascular endothelial growth factor (VEGF) secretion. Real-time polymerase chain reaction (real-time PCR) was performed to detect the gene expression of 91 different genes in a specific porcine RPE gene array. Fuc1 slightly reduced wound healing, but did not influence cell viability, phagocytosis or RPE65 expression. Fuc1 lowered IL-6, IL-8 and VEGF secretion. Furthermore, Fuc1 did not change tested RPE genes. In conclusion, Fuc1 does not impair RPE cellular functions and shows antiangiogenic and anti-inflammatory activities, which indicates its safety and strengthens its suitability concerning ocular diseases.
Collapse
Affiliation(s)
- Philipp Dörschmann
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Georg Kopplin
- Alginor ASA, Haraldsgata 162, 5525 Haugesund, Norway
| | - Johann Roider
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| | - Alexa Klettner
- Department of Ophthalmology, University Medical Center, University of Kiel, Arnold-Heller-Str. 3, Haus 25, 24105 Kiel, Germany
| |
Collapse
|
9
|
Usov AI, Bilan MI, Ustyuzhanina NE, Nifantiev NE. Fucoidans of Brown Algae: Comparison of Sulfated Polysaccharides from Fucus vesiculosus and Ascophyllum nodosum. Mar Drugs 2022; 20:638. [PMID: 36286461 PMCID: PMC9604890 DOI: 10.3390/md20100638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Preparations of sulfated polysaccharides obtained from brown algae are known as fucoidans. These biopolymers have attracted considerable attention due to many biological activities which may find practical applications. Two Atlantic representatives of Phaeophyceae, namely, Fucus vesiculosus and Ascophyllum nodosum, belonging to the same order Fucales, are popular sources of commercial fucoidans, which often regarded as very similar in chemical composition and biological actions. Nevertheless, these two fucoidan preparations are polysaccharide mixtures which differ considerably in amount and chemical nature of components, and hence, this circumstance should be taken into account in the investigation of their biological properties and structure-activity relationships. In spite of these differences, fractions with carefully characterized structures prepared from both fucoidans may have valuable applications in drug development.
Collapse
Affiliation(s)
- Anatolii I. Usov
- The Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | | | | | - Nikolay E. Nifantiev
- The Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|