1
|
Hwang PA, Liu YC, Hsu FY. Enhancement of the mechanical and hydration properties of biomedical-grade bacterial cellulose using Laminaria japonica extract. Int J Biol Macromol 2025; 308:142688. [PMID: 40169052 DOI: 10.1016/j.ijbiomac.2025.142688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
This study investigated whether the incorporation of L. japonica extract into bacterial cellulose (BC) membranes enhanced their suitability for biomedical applications such as wound dressings. This extract was added at concentrations of 10 % and 25 % to BC cultures, and we then analyzed its effects on BC-10 and BC-25 production, chemical composition, hydration, and bioactivity. We found that while L. japonica extract did not significantly increase BC yield, it modified membrane microstructure by increasing water absorption and reducing syneresis, two key aspects of biomedical materials. Chemical composition analysis revealed that the L. japonica extract adhered to the BC surface and occupied spaces between fibers in a gel-like state, which is characteristic of this material. Overall, these findings show that BC-25 improved fibroblast viability and promoted the expression of proteins linked to wound healing without causing excessive cell adhesion. Overall, BC-25 exhibits promising material properties-including enhanced hydration and bioactivity-for future biomedical applications.
Collapse
Affiliation(s)
- Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Yu-Ching Liu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
2
|
Zheng Y, Sun F, Liu S, Wang G, Chen H, Guo Y, Wang X, Escobar Bonora ML, Zhang S, Li Y, Chen G. Enhancing D-lactic acid production from non-detoxified corn stover hydrolysate via innovative F127-IEA hydrogel-mediated immobilization of Lactobacillus bulgaricus T15. Front Microbiol 2024; 15:1492127. [PMID: 39703712 PMCID: PMC11655503 DOI: 10.3389/fmicb.2024.1492127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Background The production of D-lactic acid (D-LA) from non-detoxified corn stover hydrolysate is hindered by substrate-mediated inhibition and low cell utilization times. In this study, we developed a novel temperature-sensitive hydrogel, F127-IEA, for efficient D-LA production using a cell-recycle batch fermentation process. Results F127-IEA exhibited a porous structure with an average pore size of approximately 1 μm, facilitating the formation of stable Lactobacillus bulgaricus clusters within the gel matrix. It also maintains excellent mechanical properties. It also maintains excellent mechanical properties. F127-IEA immobilized Lactobacillus bulgaricus T15 (F127-IEA-T15) can be used in cell-recycle fermentation for over 150 days from glucose and 50 days from corn stover hydrolysate, achieving high production rates of D-LA from glucose (2.71 ± 0.85 g/L h) and corn stover hydrolysate (1.29 ± 0.39 g/L h). F127-IEA-T15 enhanced D-LA production by adsorbing and blocking toxic substances present in corn stover hydrolysate that are detrimental to cellular activity. Conclusions The newly developed hydrogels in this study provide a robust platform for large-scale extraction of D-LA from non-detoxified corn stover.
Collapse
Affiliation(s)
- Yuhan Zheng
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Feiyang Sun
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Siyi Liu
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Gang Wang
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Huan Chen
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Yongxin Guo
- Northeast Institute of Geography and Agroecology, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiufeng Wang
- Biotechnology Research and Development Center, Vegetable and Flower Science Research Institute of Jilin Province, Changchun, China
| | - Maia Lia Escobar Bonora
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Sitong Zhang
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Yanli Li
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Education Ministry of China, Changchun, Jilin, China
| |
Collapse
|
3
|
Savitskaya I, Zhantlessova S, Kistaubayeva A, Ignatova L, Shokatayeva D, Sinyavskiy Y, Kushugulova A, Digel I. Prebiotic Cellulose-Pullulan Matrix as a "Vehicle" for Probiotic Biofilm Delivery to the Host Large Intestine. Polymers (Basel) 2023; 16:30. [PMID: 38201695 PMCID: PMC10780842 DOI: 10.3390/polym16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/12/2024] Open
Abstract
This study describes the development of a new combined polysaccharide-matrix-based technology for the immobilization of Lactobacillus rhamnosus GG (LGG) bacteria in biofilm form. The new composition allows for delivering the bacteria to the digestive tract in a manner that improves their robustness compared with planktonic cells and released biofilm cells. Granules consisting of a polysaccharide matrix with probiotic biofilms (PMPB) with high cell density (>9 log CFU/g) were obtained by immobilization in the optimized nutrient medium. Successful probiotic loading was confirmed by fluorescence microscopy and scanning electron microscopy. The developed prebiotic polysaccharide matrix significantly enhanced LGG viability under acidic (pH 2.0) and bile salt (0.3%) stress conditions. Enzymatic extract of feces, mimicking colon fluid in terms of cellulase activity, was used to evaluate the intestinal release of probiotics. PMPB granules showed the ability to gradually release a large number of viable LGG cells in the model colon fluid. In vivo, the oral administration of PMPB granules in rats resulted in the successful release of probiotics in the colon environment. The biofilm-forming incubation method of immobilization on a complex polysaccharide matrix tested in this study has shown high efficacy and promising potential for the development of innovative biotechnologies.
Collapse
Affiliation(s)
- Irina Savitskaya
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (I.S.); (L.I.); (D.S.)
| | - Sirina Zhantlessova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (I.S.); (L.I.); (D.S.)
| | - Aida Kistaubayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (I.S.); (L.I.); (D.S.)
| | - Ludmila Ignatova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (I.S.); (L.I.); (D.S.)
| | - Dina Shokatayeva
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (I.S.); (L.I.); (D.S.)
| | | | - Almagul Kushugulova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan;
| | - Ilya Digel
- Institute for Bioengineering, Aachen University of Applied Sciences, Heinrich-Mußmann-Straße 1, D-52428 Jülich, Germany;
| |
Collapse
|
4
|
Guo Y, Zhao Y, Gao Y, Wang G, Zhao Y, Zhang J, Li Y, Wang X, Liu J, Chen G. Low acyl gellan gum immobilized Lactobacillus bulgaricus T15 produce D-lactic acid from non-detoxified corn stover hydrolysate. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:43. [PMID: 36915198 PMCID: PMC10009946 DOI: 10.1186/s13068-023-02292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Straw biorefinery offers economical and sustainable production of chemicals. The merits of cell immobilization technology have become the key technology to meet D-lactic acid production from non- detoxified corn stover. In this paper, Low acyl gellan gum (LA-GAGR) was employed first time for Lactobacillus bulgaricus T15 immobilization and applied in D-lactic acid (D-LA) production from non-detoxified corn stover hydrolysate. Compared with the conventional calcium alginate (E404), LA-GAGR has a hencky stress of 82.09 kPa and excellent tolerance to 5-hydroxymethylfurfural (5-HMF), ferulic acid (FA), and vanillin. These features make LA-GAGR immobilized T15 work for 50 days via cell-recycle fermentation with D-LA yield of 2.77 ± 0.27 g/L h, while E404 immobilized T15 can only work for 30 days. The production of D-LA from non-detoxified corn stover hydrolysate with LA-GAGR immobilized T15 was also higher than that of free T15 fermentation and E404 immobilized T15 fermentation. In conclusion, LA-GAGR is an excellent cell immobilization material with great potential for industrial application in straw biorefinery industry.
Collapse
Affiliation(s)
- Yongxin Guo
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Yuru Zhao
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Yuan Gao
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Jilin, 130118, China
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Hubei, 430000, China
- Sericultural Research Institute of Jilin Province, Jilin, China
| | - Gang Wang
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China.
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Jilin, 130118, China.
| | - Yixin Zhao
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Jiejing Zhang
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Yanli Li
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
| | - Xiqing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Hubei, 430000, China
| | - Juan Liu
- Sericultural Research Institute of Jilin Province, Jilin, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Jilin, 130118, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Jilin, 130118, China
| |
Collapse
|
5
|
Charoenrak S, Charumanee S, Sirisa-Ard P, Bovonsombut S, Kumdhitiahutsawakul L, Kiatkarun S, Pathom-Aree W, Chitov T, Bovonsombut S. Nanobacterial Cellulose from Kombucha Fermentation as a Potential Protective Carrier of Lactobacillus plantarum under Simulated Gastrointestinal Tract Conditions. Polymers (Basel) 2023; 15:polym15061356. [PMID: 36987137 PMCID: PMC10054358 DOI: 10.3390/polym15061356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Kombucha bacterial cellulose (KBC), a by-product of kombucha fermentation, can be used as a biomaterial for microbial immobilization. In this study, we investigated the properties of KBC produced from green tea kombucha fermentation on days 7, 14, and 30 and its potential as a protective carrier of Lactobacillus plantarum, a representative beneficial bacteria. The highest KBC yield (6.5%) was obtained on day 30. Scanning electron microscopy showed the development and changes in the fibrous structure of the KBC over time. They had crystallinity indices of 90-95%, crystallite sizes of 5.36-5.98 nm, and are identified as type I cellulose according to X-ray diffraction analysis. The 30-day KBC had the highest surface area of 19.91 m2/g, which was measured using the Brunauer-Emmett-Teller method. This was used to immobilize L. plantarum TISTR 541 cells using the adsorption-incubation method, by which 16.20 log CFU/g of immobilized cells was achieved. The amount of immobilized L. plantarum decreased to 7.98 log CFU/g after freeze-drying and to 2.94 log CFU/g after being exposed to simulated gastrointestinal tract conditions (HCl pH 2.0 and 0.3% bile salt), whereas the non-immobilized culture was not detected. This indicated its potential as a protective carrier to deliver beneficial bacteria to the gastrointestinal tract.
Collapse
Affiliation(s)
- Sonthirat Charoenrak
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suporn Charumanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Panee Sirisa-Ard
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sittisin Bovonsombut
- Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand
| | | | - Suwalee Kiatkarun
- Amazing Tea Limited Partnership (Tea Gallery Group), Chiang Mai 50000, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thararat Chitov
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sakunnee Bovonsombut
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|