1
|
Pires A, Bożek A, Pietruszka H, Szkolnicka K, Gomes D, Díaz O, Cobos A, Pereira C. Whey Cheeses Containing Probiotic and Bioprotective Cultures Produced with Ultrafiltrated Cow's Whey. Foods 2024; 13:1214. [PMID: 38672888 PMCID: PMC11048827 DOI: 10.3390/foods13081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Bovine whey cheese (WC) is a product from southern European countries that presents some challenges: its production process involves high energy inputs; the yield is low; and WC has a short shelf life. The application of ultrafiltration (UF) to bovine whey before manufacture of WC and the employment of protective cultures can reduce these disadvantages. The objective of this research was the production of whey cheeses using ultrafiltrated bovine cheese whey with added probiotics or probiotics plus protective cultures. Three types of WC were produced: control CW without any addition (C); CW with the addition of the probiotic Lactobacillus acidophilus (LA5); and CW with the addition of Lactobacillus acidophilus plus a protective culture containing Lacticaseibacillus paracasei and Lacticaseibacillus rhamnosus (LA5FQ4). The WCs were stored under refrigerated conditions for 28 days. The products with added cultures presented lower pH values and higher titratable acidities when compared to the control. Sample LA5 presented the lowest pH and the highest titratable acidity, while LA5FQ4 presented intermediate values. Slight differences were observed between products regarding color parameters, chiefly resulting from storage time. The samples with added cultures were firmer when compared to the control, with LA5 cheeses showing the highest values at the end of the storage. Lactic acid bacteria (LAB) counts were on the order of log 8-9 CFU/g for the products with added cultures. Lower levels of yeasts and molds were detected on the sample with the protective culture (LA5FQ4), so that by the end of storage they presented counts one log cycle lower than C and LA5. Hence, the beneficial impact of the protective culture on the shelf life of the product is evident. Regarding sensory evaluation, LA5FQ4 cheeses obtained the highest scores for all parameters evaluated. It can be concluded that the use of UF associated with the addition of protective cultures can be very useful to reduce the energy consumption of the manufacturing process, to prolong the shelf life of WC and to improve its sensory properties.
Collapse
Affiliation(s)
- Arona Pires
- School of Agriculture, Polytechnic University of Coimbra, Bencanta, 3045-601 Coimbra, Portugal; (A.P.); (D.G.)
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
| | - Agata Bożek
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin, Poland (K.S.)
| | - Hubert Pietruszka
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin, Poland (K.S.)
| | - Katarzyna Szkolnicka
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Al. Piastów 17, 70-310 Szczecin, Poland (K.S.)
| | - David Gomes
- School of Agriculture, Polytechnic University of Coimbra, Bencanta, 3045-601 Coimbra, Portugal; (A.P.); (D.G.)
| | - Olga Díaz
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
| | - Angel Cobos
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
| | - Carlos Pereira
- School of Agriculture, Polytechnic University of Coimbra, Bencanta, 3045-601 Coimbra, Portugal; (A.P.); (D.G.)
- Centro de Estudos dos Recursos Naturais, Ambiente e Sociedade—CERNAS, 3045-601 Coimbra, Portugal
| |
Collapse
|
2
|
Pires A, Pietruszka H, Bożek A, Szkolnicka K, Gomes D, Díaz O, Cobos A, Pereira C. Sheep's Second Cheese Whey Edible Coatings with Oregano and Clary Sage Essential Oils Used as Sustainable Packaging Material in Cheese. Foods 2024; 13:674. [PMID: 38472787 DOI: 10.3390/foods13050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Sheep's second cheese whey (SCW), the by-product resulting from whey cheese production, was used as a component of cheese coatings containing oregano (Origanum compactum) and clary sage (Salvia sclarea) essential oils (EOs). SCW powder was obtained by the ultrafiltration/diafiltration of SCW followed by reverse osmosis and freeze drying. The coatings were produced with a mixture of SCW and whey protein isolate (WPI) using glycerol as plasticizer. Model cheeses were produced with cow´s milk and those containing SCW:WPI coatings; those with and without EOs were compared to controls without coating and with a commercial coating containing natamycin. At the end of ripening (28 days), the cheeses containing EOs presented higher water activity (ca. 0.930) and moisture content, as well as lower titratable acidity. Concerning color parameters, significant differences were also observed between products and as a result of ripening time. However, the use of SCW:WPI coatings did not significantly influence the color parameters at the end of ripening. Regarding texture parameters, the cheeses containing SCW:WPI coatings presented significantly lower values for hardness, chewiness, and gumminess. Significant differences were also observed for all microbial groups evaluated either between products and as a result of ripening time. In all cases, lactobacilli and lactococci counts surpassed log 7-8 CFU/g, while the counts of yeasts and molds increased steadily from ca. log 3 to log 6 CFU/g. The lowest counts of yeasts and molds were observed in the samples containing natamycin, but nonsignificant differences between products were observed. In conclusion, SCW:WPI cheese coatings can successfully substitute commercial coatings with the advantage of being edible packaging materials manufactured with by-products.
Collapse
Affiliation(s)
- Arona Pires
- School of Agriculture, Bencanta, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Hubert Pietruszka
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI St. No. 3, 71-459 Szczecin, Poland
| | - Agata Bożek
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI St. No. 3, 71-459 Szczecin, Poland
| | - Katarzyna Szkolnicka
- Department of Toxicology, Dairy Technology and Food Storage, West Pomeranian University of Technology, Papieża Pawła VI St. No. 3, 71-459 Szczecin, Poland
| | - David Gomes
- School of Agriculture, Bencanta, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal
| | - Olga Díaz
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Angel Cobos
- Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Pereira
- School of Agriculture, Bencanta, Polytechnic University of Coimbra, 3045-601 Coimbra, Portugal
- Centro de Estudos dos Recursos Naturais, Ambiente e Sociedade-CERNAS, 3045-601 Coimbra, Portugal
| |
Collapse
|
3
|
Bintsis T, Papademas P. Sustainable Approaches in Whey Cheese Production: A Review. DAIRY 2023. [DOI: 10.3390/dairy4020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Whey cheeses have been produced from the very early steps of cheesemaking practices as a sustainable way to utilize whey, which is the main by-product of cheesemaking. Traditional whey cheeses, manufactured with similar processes, are Ricotta, Ricotta salata or Ricottone, and Ricotta fresca in Italy; Anthotyros, Myzithra, Manouri, Xynomyzithra, and Urda in Greece; Urda in Serbia and Romania as well as in other countries such as Israel; Lor in Turkey; Anari in Cyprus; Skuta in Croatia and Serbia; Gjetost and Brunost in Norway; Mesost and Messmör in Sweden; Mysuostur in Iceland; Myseost in Denmark; Requeijão in Portugal; and Requesón in Spain and Mexico. The production of whey cheese is based on the denaturation of whey proteins by heating to 88–92 °C. The specific processing conditions and aspects of the microbiology of whey cheeses are discussed. The special characteristics of whey cheeses, which are high pH and high moisture content, make them susceptible to microbial growth. Due to the limited shelf life of these products, extended research has been carried out to extend the shelf life of whey cheese. The sustainable preservation approaches, such as modified atmosphere packaging, addition of herbs and/or plant extracts, and bio-preservation methods are reviewed. Moreover, novel whey cheeses focused on functional properties have developed during the last 10 years.
Collapse
|
4
|
Design and Characterization of a Cheese Spread Incorporating Osmundea pinnatifida Extract. Foods 2023; 12:foods12030611. [PMID: 36766140 PMCID: PMC9914413 DOI: 10.3390/foods12030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Marine algae have been emerging as natural sources of bioactive compounds, such as soluble dietary fibers and peptides, presenting special interest as ingredients for functional foods. This study developed a cheese spread incorporating red seaweed Osmundea pinnatifida extract and subsequently characterized it in terms of nutritional, pH, and microbiological parameters and bioactivities including prebiotic, antidiabetic, antihypertensive, and antioxidant activities. This food was produced through incorporation of O. pinnatifida extract (3%), obtained via enzymatic extraction Viscozyme L in a matrix containing whey cheese (75%) and Greek-type yoghurt (22%). The product was then subjected to thermal processing and subsequently stored for 21 days at 4 °C. During storage, this food showed a high pH stability (variations lower than 0.2 units), the absence of microbial contamination and all tested bioactivities at the sampling timepoints 0 and 21 days. Indeed, it exerted prebiotic effects under Lactobacillus acidophilus LA-5® and Bifidobacterium animalis subsp. lactis BB-12®, increasing their viability to around 4 and 0.5 log CFU/g, respectively. In addition, it displayed antidiabetic (α-glucosidase inhibition: 5-9%), antihypertensive (ACE inhibition: 50-57%), and antioxidant (ABTS: 13-15%; DPPH: 3-5%; hydroxyl radical: 60-76%) activities. In summary, the cheese spread produced may be considered an innovative food with high potential to contribute toward healthier status and well-being of populations.
Collapse
|