1
|
Zhuang Y, Meng S, Cheng F, Li H. Fabrication of advanced cellulose-based devices for solar desalination: A review. Int J Biol Macromol 2025; 310:143250. [PMID: 40250663 DOI: 10.1016/j.ijbiomac.2025.143250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Materials derived from cellulose have attracted considerable attention as affordable substrates for solar desalination, contributing to the solution of the worldwide water crisis. These substances allow for exact control of structural features and improve light absorption in photothermal processes, promoting specific interactions between light scattering and reflection within their porous structure. Moreover, cellulose can be readily transformed into nano- and microporous forms, which enhances water transportation due to its inherent three-dimensional properties. This review examines the design and utilization of cellulose-based solar evaporators for desalination purposes. With benefits such as biocompatibility, environmental friendliness, economic viability, renewable nature, sustainability, and versatility for diverse designs, cellulose-derived materials are set to play a vital role in addressing global water issues.
Collapse
Affiliation(s)
- Yan Zhuang
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China; Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar University, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Feng Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Hongbin Li
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China; Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar University, China.
| |
Collapse
|
2
|
Wu P, Fu Y, Xu J, Gao X, Fu X, Wang L. The preparation of edible water-soluble films comprising κ-carrageenan/carboxymethyl starch/gum ghatti and their application in instant coffee powder packaging. Int J Biol Macromol 2024; 277:133574. [PMID: 38950797 DOI: 10.1016/j.ijbiomac.2024.133574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
This study successfully prepared an edible packaging film that rapidly dissolves in water by utilizing a combination of κ-carrageenan, carboxymethyl starch, and gum ghatti. We investigated the influence of these three materials on the microstructure and physical properties of the film, as well as the impact of the film's dissolution on the stability of beverages. SEM, FTIR, and XRD analyses revealed that the κ-carrageenan, carboxymethyl starch, and gum ghatti primarily interacted through hydrogen bonding, resulting in a more uniform and dense film structure. Surface hydrophilicity and swelling tests indicated an increased presence of hydrophilic groups in the composite film. The inclusion of carboxymethyl starch and gum ghatti significantly improves the film's physical properties, resulting in a notable reduction in water solubility time, an increase in elongation at break from 19.5 % to 26.0 %, a rise in the contact angle from 49.1° to 67.0°, and a decrease in water vapor permeability from 7.5 × 10-10 to 6.2 × 10-10 g/m·s·Pa. Furthermore, coffee packaging bags made from this composite film dissolved entirely in hot water in just 40 s. Dissolving these bags significantly improved the stability of instant coffee, reducing centrifugal sedimentation from 3.8 % to 1.7 %. This study highlights the substantial potential of the κ-carrageenan/carboxymethyl starch/gum ghatti composite film as a packaging material for solid beverages.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Yu Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| | - Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong, China
| |
Collapse
|
3
|
Kokkuvayil Ramadas B, Rhim JW, Roy S. Recent Progress of Carrageenan-Based Composite Films in Active and Intelligent Food Packaging Applications. Polymers (Basel) 2024; 16:1001. [PMID: 38611259 PMCID: PMC11014226 DOI: 10.3390/polym16071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, as concerns about petrochemical-derived polymers increase, interest in biopolymer-based materials is increasing. Undoubtedly, biopolymers are a better alternative to solve the problem of synthetic polymer-based plastics for packaging purposes. There are various types of biopolymers in nature, and mostly polysaccharides are used in this regard. Carrageenan is a hydrophilic polysaccharide extracted from red algae and has recently attracted great interest in the development of food packaging films. Carrageenan is known for its excellent film-forming properties, high compatibility and good carrier properties. Carrageenan is readily available and low cost, making it a good candidate as a polymer matrix base material for active and intelligent food packaging films. The carrageenan-based packaging film lacks mechanical, barrier, and functional properties. Thus, the physical and functional properties of carrageenan-based films can be enhanced by blending this biopolymer with functional compounds and nanofillers. Various types of bioactive ingredients, such as nanoparticles, natural extracts, colorants, and essential oils, have been incorporated into the carrageenan-based film. Carrageenan-based functional packaging film was found to be useful for extending the shelf life of packaged foods and tracking spoilage. Recently, there has been plenty of research work published on the potential of carrageenan-based packaging film. Therefore, this review discusses recent advances in carrageenan-based films for applications in food packaging. The preparation and properties of carrageenan-based packaging films were discussed, as well as their application in real-time food packaging. The latest discussion on the potential of carrageenan as an alternative to traditionally used synthetic plastics may be helpful for further research in this field.
Collapse
Affiliation(s)
- Bharath Kokkuvayil Ramadas
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| |
Collapse
|
4
|
Chanabodeechalermrung B, Chaiwarit T, Chaichit S, Udomsom S, Baipaywad P, Worajittiphon P, Jantrawut P. HPMC/PVP K90 Dissolving Microneedles Fabricated from 3D-Printed Master Molds: Impact on Microneedle Morphology, Mechanical Strength, and Topical Dissolving Property. Polymers (Basel) 2024; 16:452. [PMID: 38399830 PMCID: PMC10891514 DOI: 10.3390/polym16040452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Three-dimensional (3D) printing can be used to fabricate custom microneedle (MN) patches instead of the conventional method. In this work, 3D-printed MN patches were utilized to fabricate a MN mold, and the mold was used to prepare dissolving MNs for topical lidocaine HCl (L) delivery through the skin. Topical creams usually take 1-2 h to induce an anesthetic effect, so the delivery of lidocaine HCl from dissolving MNs can allow for a therapeutic effect to be reached faster than with a topical cream. The dissolving-MN-patch-incorporated lidocaine HCl was constructed from hydroxypropyl methylcellulose (HPMC; H) and polyvinyl pyrrolidone (PVP K90; P) using centrifugation. Additionally, the morphology, mechanical property, skin insertion, dissolving behavior, drug-loading content, drug release of MNs and the chemical interactions among the compositions were also examined. H51P2-L, H501P2-L, and H901P2-L showed an acceptable needle appearance without bent tips or a broken structure, and they had a low % height change (<10%), including a high blue-dot percentage on the skin (>80%). These three formulations exhibited a drug-loading content approaching 100%. Importantly, the composition-dependent dissolving abilities of MNs were revealed. Containing the lowest amount of HPMC in its formulation, H901P2-L showed the fastest dissolving ability, which was related to the high amount of lidocaine HCl released through the skin. Moreover, the results of an FTIR analysis showed no chemical interactions among the two polymers and lidocaine HCl. As a result, HPMC/PVP K90 dissolving microneedles can be used to deliver lidocaine HCl through the skin, resulting in a faster onset of anesthetic action.
Collapse
Affiliation(s)
- Baramee Chanabodeechalermrung
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (B.C.); (T.C.); (S.C.)
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (B.C.); (T.C.); (S.C.)
| | - Siripat Chaichit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (B.C.); (T.C.); (S.C.)
| | - Suruk Udomsom
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai 50200, Thailand; (S.U.); (P.B.)
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phornsawat Baipaywad
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai 50200, Thailand; (S.U.); (P.B.)
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (B.C.); (T.C.); (S.C.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
5
|
Cai M, Zhang X, Zhong H, Li C, Shi C, Cui H, Lin L. Ethyl cellulose/gelatin-carboxymethyl chitosan bilayer films doped with Euryale ferox seed shell polyphenol for cooked meat preservation. Int J Biol Macromol 2024; 256:128286. [PMID: 38000577 DOI: 10.1016/j.ijbiomac.2023.128286] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
This study evaluated the effects of an edible bilayer containing polyphenols from the Euryale ferox seed shell on ready-to-eat cooked beef products, including the physical, mechanical, antioxidant, and antibacterial capabilities. Here, the bilayer films were prepared by layer-by-layer solution pouring using hydrophobic ethyl cellulose (EC) as the outer layer, and hydrophilic gelatin/carboxymethyl chitosan (GC) as the inner layer. By adjusting the proportion of gelatin to carboxymethyl chitosan, the optical, mechanical, and barrier characteristics of bilayer films were markedly enhanced. Extracted polyphenol (EP) from shell of the Euryale ferox seed performed potent antibacterial property against Listeria monocytogenes (L. monocytogenes). The addition of EP to the inner layer of the optimized bilayer film further improved the mechanical and barrier properties of films, and as expected, the film exhibited antioxidant and antibacterial abilities. Additionally, cooked beef and cooked chicken preservation tests indicated that the active bilayer film showed good inhibition of L. monocytogenes and delayed lipid oxidation in ready-to-eat meat products, and significantly delayed the pH, moisture loss, color and texture changes. This study developed multifunctional bilayer active edible films, which has a great potential in the preservation ready-to-eat cooked meat products.
Collapse
Affiliation(s)
- Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xueli Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hang Zhong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Ce Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
6
|
Monasterio A, Núñez E, Brossard N, Vega R, Osorio FA. Mechanical and Surface Properties of Edible Coatings Elaborated with Nanoliposomes Encapsulating Grape Seed Tannins and Polysaccharides. Polymers (Basel) 2023; 15:3774. [PMID: 37765628 PMCID: PMC10538182 DOI: 10.3390/polym15183774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Edible composite coatings (ECC) formulated from biopolymers that incorporate antioxidant molecules represent an innovative alternative to improve food texture and provide health benefits. Tannins have aroused great interest due to their ability to stabilize suspensions and counteract the effects of free radicals. The mechanical and surface properties are crucial to establishing its quality and applicability. In this study, the objective was to analyze the mechanical and surface properties of ECC made with nanoliposomes that encapsulate grape seed tannins (TLS) and polysaccharides such as hydroxypropylmethylcellulose (HPMC) and kappa carrageenan (KCG) for their future direct application in foods susceptible to oxidation. The inclusion of HPMC or KCG affected the density, showing values in the range of 1010 to 1050 [kg/m3], evidencing significant changes (p < 0.05) in the surface tension in the TLS/FS-HPMC and TLS/FS mixtures. KCG and in the dispersion coefficients, with values in the range of -2.9 to -17.6 [mN/m] in HPS (S1) and -17.6 to -40.9 [mN/m] in PDMS (S2). The TLS/FS-HPMC coating showed higher stiffness and elastic recovery capacity than the TLS/FS-KCG coating, suggesting that the presence of TLS influenced the stiffness of the polymer. HPMC is recommended as a suitable polymer for coating solids, while KCG is more appropriate for suspensions. These findings provide valuable information for directly applying these ECC compounds to food products, potentially offering better preservation and health benefits.
Collapse
Affiliation(s)
- Angela Monasterio
- Department of Food Science and Technology, Technological Faculty, University of Santiago—Chile, USACH. Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| | - Emerson Núñez
- Department of Fruit Production and Enology, School of Agricultural and Forest Science, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (E.N.); (N.B.)
| | - Natalia Brossard
- Department of Fruit Production and Enology, School of Agricultural and Forest Science, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; (E.N.); (N.B.)
| | - Ricardo Vega
- Department of Chemical Engineering, Engineering Faculty, University of Santiago—Chile, USACH. Av. L.B. O’Higgins 3363, Estación Central, Santiago 9170022, Chile;
| | - Fernando A. Osorio
- Department of Food Science and Technology, Technological Faculty, University of Santiago—Chile, USACH. Av. El Belloto 3735, Estación Central, Santiago 9170022, Chile;
| |
Collapse
|
7
|
Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex. Polymers (Basel) 2023; 15:polym15041023. [PMID: 36850306 PMCID: PMC9967877 DOI: 10.3390/polym15041023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
A biodegradable photodynamic antibacterial film (PS-CF) was prepared using the casting method, with κ-Carrageenan (κ-Car) as the film-forming substrate and curcumin-β-cyclodextrin (Cur-β-CD) complex as photosensitizer. Chilled pork samples were coated with PS-CF and stored at 4 °C to investigate the effects of PS-CF combined with LED light irradiation (425 nm, 45 min) (PS+L+) on pork preservation during 10 days of storage. The total viable count (TVC) of bacteria, total volatile basic nitrogen value (TVB-N) and the pH of pork treated with PS+L+ were all lower than the control, and the water-holding capacity (WHC) was higher. Ten days later, the TVB-N value was 12.35 ± 0.57 mg/100 g and the TVC value was 5.78 ± 0.17 log CFU/g, which was within the acceptable range. Sensory evaluation determined that the color, odor, and overall acceptability of pork treated with PS+L+ were significantly better than the control. These findings suggest that PS+L+ treatment effectively extended the shelf life of chilled pork from ~4-5 to 10 days. Correlation analysis showed that the sensory quality of the chilled pork significantly correlated with total bacterial counts, TVB-N and thiobarbituric acid reactive substances (TBARS) (p < 0.05), suggesting that these biomarkers could be used as standard indicators for evaluating the freshness of chilled pork. These findings demonstrate the effectiveness of Cur-β-CD photodynamic antibacterial film for the preservation of chilled pork and provide a theoretical basis for the application of the film for the preservation of fresh food in general.
Collapse
|
8
|
Aleksanyan KV. Polysaccharides for Biodegradable Packaging Materials: Past, Present, and Future (Brief Review). Polymers (Basel) 2023; 15:451. [PMID: 36679331 PMCID: PMC9865279 DOI: 10.3390/polym15020451] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The ecological problems emerging due to accumulation of non-biodegradable plastics are becoming more and more urgent. This problem can be solved by the development of biodegradable materials which will replace the non-biodegradable ones. Among numerous approaches in this field, there is one proposing the use of polysaccharide-based materials. These polymers are biodegradable, non-toxic, and obtained from renewable resources. This review opens discussion about the application of polysaccharides for the creation of biodegradable packaging materials. There are numerous investigations developing new formulations using cross-linking of polymers, mixing with inorganic (metals, metal oxides, clays) and organic (dyes, essential oils, extracts) compounds. The main emphasis in the present work is made on development of the polymer blends consisting of cellulose, starch, chitin, chitosan, pectin, alginate, carrageenan with some synthetic polymers, polymers of natural origin, and essential oils.
Collapse
Affiliation(s)
- Kristine V. Aleksanyan
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow 119991, Russia; or
- Engineering Center, Plekhanov Russian University of Economics, Stremyannyi per. 36, Moscow 117997, Russia
| |
Collapse
|