1
|
Kavuşan HS, Serdaroğlu M. Exploring the impact of barberry extract and grilling on oxidative and nitrosative reactions in fermented sausages: Insights into lipid-protein oxidation, nitrosamine, and 3-nitrotyrosine as a potential biomarker. Meat Sci 2025; 226:109830. [PMID: 40288224 DOI: 10.1016/j.meatsci.2025.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
This study examines the effect of barberry extract (BE) on the oxidative and nitrosative stability, as well as the quality, of meat batter, fermented sausages, and grilled sausages. Four groups were tested: Control (no BE), B200 (200 mg/kg BE), B300 (300 mg/kg BE), and B400 (400 mg/kg BE). BE exhibited high total phenolic content (46.33 mg GAE/g) and antioxidant activity (92.93 %), with a pH of 3.80. LC-QTOF-MS identified key compounds such as chlorogenic acid, quercetin, and canadine, known for their antioxidative properties. BE significantly reduced nitrite content, demonstrating pH-dependent nitrite-scavenging activity. Higher concentrations (B300, B400) led to reduced redness (a*), indicating slight changes in color stability. BE also inhibited lipid-protein oxidation, with lower peroxide values, TBARS, carbonyls, and sulfhydryls, and significantly reduced 3-nitrotyrosine (3-NT) and nitrosamine concentrations (P < 0.05). Despite cooking-induced increases in nitrosamines, BE minimized this rise, keeping nitrosamine levels lower than the control (P < 0.05). The correlation between 3-NT levels and oxidation products suggests 3-NT as a potential biomarker for oxidative stress. These findings suggest that BE enhances antioxidant properties, mitigates nitrosative stress, and improves the quality of meat products.
Collapse
Affiliation(s)
- Hülya Serpil Kavuşan
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, Izmir, Turkey
| | - Meltem Serdaroğlu
- Ege University, Engineering Faculty, Food Engineering Department, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
2
|
You Z, Chen Y, Teng W, Wang Y, Zhang Y, Cao J, Wang J. Heat-Induced Preparation of Myofibrillar Protein Gels Reinforced Through Ferulic Acid, α-Cyclodextrin and Fe(III). Foods 2025; 14:1290. [PMID: 40282692 PMCID: PMC12027181 DOI: 10.3390/foods14081290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/02/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Phenolic acids have a positive effect on the processing quality of myofibrillar protein (MP) gels. However, in this study, the addition of ferulic acid (FA) did not have a positive effect on MP gels. To address this issue, we performed the addition and observed the effects on the structure of MP gels by both surface coating and internal cross-linking: addition of FA alone, addition of α-cyclodextrin (CD) to encapsulate FA (MP-FA/CD), and addition of Fe(III) to form a metal-phenolic network structure (Fe @MP-FA) and a metal-cyclodextrin-phenolic acid structure (Fe@MP-FA /CD). It was found that both Fe @MP-FA formed by surface coating and internal cross-linking were able to improve the textural properties of MP gels, including hardness, elasticity, chewability, adhesion, etc. FA effectively promoted the conversion of some of the non-fluidizable water to the bound water morphology, and the addition of Fe(III) effectively enhanced this trend. In particular, the composite network structure formed by Fe@MP-FA/CD more significantly promoted the conversion to bound water and improved the water retention of the gel. Hydrophobic interactions and hydrogen bonding in non-covalent bonding as well as disulfide bonding in covalent bonding were always the main factors promoting the formation of gels from MP after different additions. Meanwhile, different gel treatments lead to changes in the structure of different proteins. Internal cross-linking with the addition of FA promotes protein oxidation, whereas CD reduces the occurrence of oxidation and promotes a homogeneous gel structure. Surface coating with the addition of FA/CD resulted in a reduction in pores in the MP gels and a denser gel structure. However, the addition of internal cross-linking resulted in a gel with a loose and rough network structure. In this study, we compared the common methods of gel enhancement, with the objective of providing a reference for the improvement in the gel texture of meat products.
Collapse
Affiliation(s)
- Ziyi You
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Z.Y.); (Y.C.); (W.T.); (Y.W.); (Y.Z.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yushan Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Z.Y.); (Y.C.); (W.T.); (Y.W.); (Y.Z.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Z.Y.); (Y.C.); (W.T.); (Y.W.); (Y.Z.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Z.Y.); (Y.C.); (W.T.); (Y.W.); (Y.Z.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Z.Y.); (Y.C.); (W.T.); (Y.W.); (Y.Z.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Z.Y.); (Y.C.); (W.T.); (Y.W.); (Y.Z.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; (Z.Y.); (Y.C.); (W.T.); (Y.W.); (Y.Z.); (J.C.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Liu Q, Huang X, Ma H, Qin X, Hong P, Pi X, Zhou C. Effect of Pre-Emulsified Flaxseed Oil Containing Rutin on the Quality of Nemipterus virgatus Surimi Gel: Gelatinization Properties, Storage Stability, and Protein Digestibility. Foods 2025; 14:242. [PMID: 39856907 PMCID: PMC11765390 DOI: 10.3390/foods14020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Rinsing during surimi protein processing can result in the loss of essential nutrients, such as fats and minerals. Therefore, supplementing functional fats in a stable form can make up for the fat loss of surimi during the rinsing process. This research aimed to investigate the effects of incorporating pre-emulsified flaxseed oil with different concentrations of rutin (0, 0.5, 1.5, 2.5, and 3.5%, dissolved in flaxseed oil, w/v) to Nemipterus virgatus surimi on the gelatinization properties, lipid oxidation, and in vitro static simulated digestion characteristics of surimi gels. The results indicated that the addition of 1.5% rutin significantly improved the water-holding capacity and decreased the cooking loss rate of surimi gel (p < 0.05). The results of optical microscopy and scanning electron microscopy showed that the addition of 1.5% rutin promoted a denser network structure of surimi gel. Furthermore, the incorporation of rutin effectively slowed lipid oxidation in pre-emulsified flaxseed oil surimi gel. Compared with the gel group containing only pre-emulsified flaxseed oil, the addition of rutin significantly reduced the levels of volatile base nitrogen (TVB-N) and thiobarbituric acid reactive substances (TBARSs) in the gel and also mitigated the decline in acidity (p < 0.05). Moreover, the addition of rutin significantly inhibited the decrease in pH of surimi gel during storage (p < 0.05). In vitro static simulated digestion demonstrated that the addition of 1.5% rutin enhanced the protein digestibility from 71.2% to 77.2% of the surimi gel. Therefore, adding pre-emulsified oil containing an appropriate amount of rutin to surimi can not only compensate for the fat loss during the surimi rinsing process but also effectively improve the quality characteristics of surimi gels. This research will provide a theoretical basis for the effective addition of functional lipids in surimi products and the development of nutritious and healthy surimi products.
Collapse
Affiliation(s)
- Qingguan Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; (Q.L.); (X.H.); (H.M.); (P.H.)
| | - Xiaobing Huang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; (Q.L.); (X.H.); (H.M.); (P.H.)
| | - Huanta Ma
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; (Q.L.); (X.H.); (H.M.); (P.H.)
| | - Xinyi Qin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; (Q.L.); (X.H.); (H.M.); (P.H.)
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; (Q.L.); (X.H.); (H.M.); (P.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Xiaowen Pi
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Modern Agricultural Science and Technology Innovation Center, Zhanjiang 524088, China; (Q.L.); (X.H.); (H.M.); (P.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| |
Collapse
|
4
|
Li S, Wu W, Tang S, Wang J. Effects of Eleutherine bulbosa extract on the myofibrillar protein oxidation and moisture migration of yak meat under oxidation stress. Meat Sci 2024; 215:109550. [PMID: 38820704 DOI: 10.1016/j.meatsci.2024.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The influence of Eleutherine bulbosa (EB) extract at various levels (1, 4, 7, 10 or 13 g/kg) on the myofibrillar protein oxidation and moisture migration of yak meat in Fenton oxidation system was investigated. The results showed that inclusion of EB extract in yak meat efficiently inhibited carbonyl formation triggered by hydroxyl radicals. Supplementation of EB extract at 1-10 g/kg manifested more contents of the active sulfhydryl, ε-NH2 groups and α-helix structure, and higher solubility of myofibrillar proteins (MPs), but alleviated the turbidity of MPs. However, adding high level of EB extract (13 g/kg) induced the loss of free amine and α-helix content and resulted in more aggregation of MPs. The SDS-PAGE demonstrated that adding 1-7 g/kg EB extract had an obvious protective effect for myosin heavy chain and actin, whereas 10 or 13 g/kg EB extract led to weakened intensities of protein bands. DSC and LF-NMR analysis revealed that 7 g/kg EB extract had appreciable effects on thermal stabilities of MPs, and improved the hydration of yak meat induced by oxidation, while 13 g/kg EB extract accelerated MP structure destabilization and lowered water retention. Our results suggested that incorporation of low levels of EB extract (1-7 g/kg) effectively retarded the oxidative damage to MPs and EB extract could be a promising natural antioxidant in meat processing.
Collapse
Affiliation(s)
- Sining Li
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Wenjing Wu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Shanhu Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| | - Jianxiang Wang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
5
|
Guo Z, Chen Y, Wu Y, Zhan S, Wang L, Li L, Zhang H, Xu Z, Qiu S, Cao J, Guo J, Niu L, Zhong T. Changes in meat quality, metabolites and microorganisms of mutton during cold chain storage. Food Res Int 2024; 189:114551. [PMID: 38876590 DOI: 10.1016/j.foodres.2024.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
During the cold chain storage process, changes in metabolites and microorganisms are highly likely to lead to changes in meat quality. To elucidate the changes in the composition of metabolites and microbiota during cold chain storage of mutton, this study utilized untargeted metabolome and 5R 16S rRNA sequencing analyses to investigate the changes in the longissimus dorsi under different cold chain temperatures (4 °C and -20 °C). With the extension of cold chain storage time, the meat color darkened and the content of C18:2n-6, C20:3n-6, and C23:0 were significantly increased in mutton. In this study, nine metabolites, including 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine, alanylphenylala-nine, indole-3-acrylic acid and the others, were significantly altered during cold chain storage. The abundance of the dominant microorganisms, including Brachymonas, Aeromonas, Corynebacterium and Steroidobacter, was significantly altered. Furthermore, a high correlation was observed between the different metabolites and microorganisms. These findings provide an in-depth understanding of the effects of different cold chain storage temperatures and times on the quality of mutton.
Collapse
Affiliation(s)
- Ziwei Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yibing Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuqin Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenying Xu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| | - Shixiu Qiu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
6
|
Guo X, Wang R, Han B, Shao W, Chen L, Feng X. A novel EGCG-Histidine complex improves gelling and physicochemical properties of porcine myofibrillar proteins: Insight into underlying mechanisms. Food Chem 2024; 448:139070. [PMID: 38555690 DOI: 10.1016/j.foodchem.2024.139070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/28/2024] [Accepted: 03/16/2024] [Indexed: 04/02/2024]
Abstract
Herein, an EGCG-Histidine complex is prepared, characterized, and further used to improve gel properties of myofibrillar proteins (MP). Results of FTIR, XRD, UV-Vis spectroscopy showed that histidine is covalently bound to EGCG by Michael addition or Schiff base reaction to form EGCG-Histidine complex, and antioxidant activity of EGCG-Histidine complex is significantly increased compared to EGCG or histidine alone (P < 0.05). The addition of EGCG-Histidine complex results in cooking loss of gel decreasing from 66.7 ± 0.23 % to 40.3 ± 2.02 %, and improves rheological properties of MP, and enhances gel strength from 0.10 ± 0.01 N to 0.22 ± 0.03 N, indicating positive effect of EGCG-Histidine complex on MP gel formation, above results is supported by results of SEM, CD spectroscopy, SDS-PAGE, and tryptophan fluorescence. These results indicated that EGCG-Histidine complex can be used as a functional ingredient to improve gel quality of meat products.
Collapse
Affiliation(s)
- Xiao Guo
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Renzheng Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Bofu Han
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wei Shao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Qin C, Wang H, Peng W, Yue B, Fu C, Shu S, Zhong J, Wang H. Circular RNA mapping reveals CircCWC22 as a MiR-3059-x sponge in yak fat deposition by regulating HMGCL. Int J Biol Macromol 2024; 257:128531. [PMID: 38042314 DOI: 10.1016/j.ijbiomac.2023.128531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
The regulatory mechanisms and functions of circular RNAs (circRNAs) in yak intramuscular fat (IMF) deposition remain unclear. This study aimed to investigate yak circRNAs with high and low IMF content using high-throughput sequencing. A total of 270 differentially expressed circRNAs were identified, of which 129 were upregulated and 141 were downregulated. Among these circRNAs, circCWC22, derived from the yak CWC22 gene, was further studied to understand its functions and regulatory mechanisms. Sequencing and RNase R processing confirmed the circular nature of circCWC22. By constructing a circRNA-miRNA-mRNA co-expression network, the potential regulatory pathway of circCWC22/miR-3059-x/HMGCL was identified. To investigate the roles of circCWC22, miR-3059-x, and HMGCL in the deposition of yak intramuscular preadipocytes (YIMAs), CCK-8, EdU, BODIPY, triglyceride content, and qRT-PCR analyses were performed. The results demonstrated that circCWC22, miR-3059-x, and HMGCL promoted the differentiation and inhibited the proliferation of YIMAs. Using the dual-luciferase reporter system and qRT-PCR, we confirmed that circCWC22 adsorbed miR-3059-x, and HMGCL was identified as a target gene of miR-3059-x. In conclusion, this study uncovered a large number of potential circRNAs involved in IMF deposition and highlighted the significant role of circCWC22 in yak IMF deposition via the circCWC22/miR-3059-x/HMGCL axis.
Collapse
Affiliation(s)
- Chunyu Qin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Changqi Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Shi Shu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610225, China.
| |
Collapse
|
8
|
Barmoudeh Z, Fouani MH, Moslemi Z, Azizi M, Doustimotlagh AH, Bardania H. Melatonin and metformin co-loaded nanoliposomes efficiently attenuate liver damage induced by bile duct ligation in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:395-410. [PMID: 37452836 DOI: 10.1007/s00210-023-02613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
In the current study, the therapeutic effectiveness of the metformin (Met) and melatonin (Mel) co-loaded liposomes was investigated on cholestasis induced by bile duct ligation (BDL) in male rats. Histopathological analysis, biochemical analysis, and oxidative stress markers were assayed to determine the therapeutic effect of Met and Mel co-loaded liposomes on cholestasis. Histopathological analysis revealed that the simultaneous administration of Met and Mel, whether in the free (C-Mel-Met) or liposomal (C-Lipo-Mel-Met) forms, reduced inflammation as well as proliferation of bile ducts; however, results were more prominent in the liposomal form of Mel and Met. Additionaly, serum levels of aspartate aminotransferase (AST) were significantly (p < 0.001) higher in (C-Mel-Met) treated rats compared with (BDL) rats; however, (C-Lipo-Mel-Met) treated rats exhibited significant (p < 0.05) lower AST rates in comparison to (BDL) rats. Moreover, a significant (p < 0.0001) drop in bilirubin levels was detected in (C-Lipo-Mel-Met) treated rats in comparison to (BDL) rats; it is noteworthy mentioning that bilirubin levels in (C-Lipo-Mel-Met) treated rats were insignificant in comparison to sham-control (SC) rats. Furthermore, rats concomitantly administered Met and Mel, exhibited significant downregulation in the expression levels of inflammatory cytokine genes such as TNF-α and IL-1 gene expression, where the downregulation was more prominent in the liposomal from. Our findings demonestrate that the concomitant administration of metformin and melatonin in the liposomal form had more therapeutic effect on liver injury than their free forms through improving histological changes, reducing biochemical markers and favoring oxidant- antioxidant balance.
Collapse
Affiliation(s)
- Zahra Barmoudeh
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Moslemi
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahdokht Azizi
- Clinical Research Development Unit, Imamsajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Amir Hossein Doustimotlagh
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
9
|
Cueto Covarrubias LA, Valdez Solana MA, Avitia Domínguez C, Téllez Valencia A, Meza Velázquez JA, Sierra Campos E. Characterization of Moringa oleifera Seed Oil for the Development of a Biopackage Applied to Maintain the Quality of Turkey Ham. Polymers (Basel) 2023; 16:132. [PMID: 38201797 PMCID: PMC10780569 DOI: 10.3390/polym16010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Moringa oleifera has a high level of active chemicals that are useful in the food industry, and they have antibacterial and food preservation properties. The characterization of M. oleifera seed oil (MOS) may vary due to agronomic and environmental factors. Therefore, it was necessary to know the composition of lipids present in our oil extracted under pressing at 180 °C and thus determine if it is suitable to produce a biopackaging. Within the characterization of the oil, it was obtained that MOS presented high-quality fatty acids (71% oleic acid) with low values of acidity (0.71 mg KOH/g) and peroxide (1.74 meq O2/kg). Furthermore, MOS was not very sensitive to lipoperoxidation by tert-butyl hydroperoxide (tBuOOH) and its phenolic components, oleic acid and tocopherols, allowed MOS to present a recovery of 70% after 30 min of treatment. Subsequently, a biopackaging was developed using a multiple emulsion containing corn starch/carboxymethylcellulose/glycerol/MOS, which presented good mechanical properties (strength and flexibility), transparency, and a barrier that prevents the transfer of UV light by 30% and UV-C by 98%, as well as a flux with the atmosphere of 5.12 × 10-8 g/ m.s. Pa that prevents moisture loss and protects the turkey ham from O2. Hence, the turkey ham suffered less weight loss and less hardness due to its preservation in the biopackaging.
Collapse
Affiliation(s)
- Lesly Adamari Cueto Covarrubias
- Facultad de Ciencias Químicas GP, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35015, Durango, Mexico
| | - Mónica Andrea Valdez Solana
- Facultad de Ciencias Químicas GP, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35015, Durango, Mexico
| | - Claudia Avitia Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Durango, Mexico
| | - Alfredo Téllez Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Durango, Mexico
| | - Jorge Armando Meza Velázquez
- Facultad de Ciencias Químicas GP, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35015, Durango, Mexico
| | - Erick Sierra Campos
- Facultad de Ciencias Químicas GP, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35015, Durango, Mexico
| |
Collapse
|