1
|
Chaurasia S, Pandey A. Artocarpus lakoocha seed starch and thymol-based films for extending fresh fruit shelf life: Antioxidant and physicochemical properties. Int J Biol Macromol 2025; 294:139556. [PMID: 39764916 DOI: 10.1016/j.ijbiomac.2025.139556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
This study addresses the need for sustainable fruit preservation packaging by developing biodegradable films from nonconventional starch sources. The purpose was to enhance film properties and antioxidant capabilities using fatty acid-modified Artocarpus lakoocha starch films incorporated with thymol. The objective is to evaluate the impact of fatty acid modification on film characteristics and the antioxidant potential of thymol-unfused films. The films were prepared using the solvent casting method and analysed for physical, mechanical, morphological, thermal, analytical, and antioxidant properties. Results indicate that fatty acid modification reduces moisture content (10.30 ± 1.02) and improves transparency (29.66 ± 0.42) compared to non-modified starch films (42.64 ± 1.18). SEM analysis reveals a smooth and homogeneous surface, and X-ray diffraction indicates A-type crystallinity in native starch. Fourier transform infrared spectroscopy confirms intermolecular hydrogen bonding interactions between fatty acid, thymol, starch, and glycerol. Thermal analysis demonstrates good stability. Starch modification with fatty acid notably enhances film strength, flexibility, and overall functionality. Thymol-infused films exhibit antioxidant properties, with stearic acid-modified starch film showing the highest DPPH radical scavenging activity (90.01 %). In conclusion, this study highlights the utilization of nonconventional starch sources to producing biodegradable films with antioxidant properties, offering promising applications in sustainable fruit preservation packaging.
Collapse
Affiliation(s)
- Surabhi Chaurasia
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| | - Anima Pandey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
2
|
Chandak A, Dhull SB, Chawla P, Goksen G, Rose PK, Al Obaid S, Ansari MJ. Lotus (Nelumbo nucifera G.) seed starch: Understanding the impact of physical modification sequence (ultrasonication and HMT) on properties and in vitro digestibility. Int J Biol Macromol 2024; 278:135032. [PMID: 39182880 DOI: 10.1016/j.ijbiomac.2024.135032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Native lotus (Nelumbo nucifera G.) seed starch (LSS) was single- and dual-modified by heat-moisture treatment (HMT), ultrasonication (US), HMT followed by the US (HMT-US), and the US followed by HMT (US-HMT). The modified lotus seed starch (LSS) was evaluated for its physicochemical, pasting, thermal, and rheological properties and in vitro digestibility. All treatments decreased the swelling power (10.52-14.0 g/g), solubility (12.20-15.95 %), and amylose content (23.71-25.67 %) except for ultrasonication (17.67 g/g, 17.90 %, 29.09 %, respectively) when compared with native LSS (15.05 g/g, 16.12 %, 27.12 %, respectively). According to the rheological study, G' (1665-4004 Pa) was greater than G″ (119-308 Pa) for all LSS gel samples demonstrating their elastic character. Moreover, gelatinization enthalpy (17.56-16.05 J/g) increased in all treatments compared to native LSS (15.38 J/g). Ultrasonication treatment improved the thermal stability of LSS. The digestibility results showed that dual modification using HMT and US significantly enhanced resistant starch (RS) and reduced slowly digestible starch (SDS) in LSS. Cracks were observed on the surface of the modified LSS granules. Peak viscosity decreased in all modified starches except for ultrasonication, suggesting their resistance to shear-thinning during cooking, making them ideal weaning food components. The results obtained after different modifications in this study could be a useful ready reference to select appropriate modification treatments to produce modified LSS with desired properties depending on their end-use.
Collapse
Affiliation(s)
- Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana -125055, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana -125055, India.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana -125055, India
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
3
|
Liu C, Zhan A, Liu P, Li R, Li K, Li J. Cross-linking affecting properties and in-vitro digestibility of starch-sucrose ester complexes. Int J Biol Macromol 2024; 276:133808. [PMID: 39004257 DOI: 10.1016/j.ijbiomac.2024.133808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
This study investigated the effects of cross-linking on the characteristics and in-vitro digestibility of starch-sucrose ester (SE) complexes. To achieve this, corn starch (CS) was cross-linked with various concentrations of sodium trimetaphosphate /sodium tripolyphosphate (5 %, 10 %, and 15 %). Subsequently, cross-linked starches (CLS) were complexed with SE through hydrothermal treatment. X-ray diffraction analysis revealed that V-type amylose-lipid complexes formed by the interaction between CS and SE. The resultant CS-SE complex significantly reduced CS digestibility, increasing its resistant starch (RS) content from 10.19 % to 22.71 %. The cross-linking modification did not alter the crystalline pattern of the CS-SE complex. Several CLS-SE complexes demonstrated higher enzymatic resistance compared to the CS-SE complex. The CLS10-SE complex exhibited the highest RS content of 39.37 % when the cross-linking agent concentration was 10 %. This phenomenon may be attributable to the cross-linking reaction having enhanced the interaction between starch molecular chains, reducing the solubility and swelling power, thereby hindering the accessibility of starch chains to digestive enzymes. These findings indicate that cross-linking modification is a practical approach to improving the anti-digestion performance of starch-lipid complexes.
Collapse
Affiliation(s)
- Cancan Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China; College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ahui Zhan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peihua Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ruoxuan Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Naseem S, Bhat SU, Gani A, Bhat FA. Starch exploration in Nelumbo nucifera and Trapa natans: Understanding physicochemical and functional variations for future perspectives. Int J Biol Macromol 2024; 274:133077. [PMID: 38914388 DOI: 10.1016/j.ijbiomac.2024.133077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 06/03/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024]
Abstract
The current research emphasis on identifying unconventional starch sources with varied properties to broaden industrial applications. The focus of this research is on the search for alternative sources of starch with different properties in order to expand their potential use in the industrial sector. Starch was extracted from Trapa natans and Nelumbo nucifera and analyzed for their physicochemical and functional properties. They had similar protein (0.35 %) and ash contents, but the nitrogen-free extract was slightly higher in Nelumbo starch (87.58 %) than in Trapa starch (85.09 %). The amylose and amylopectin contents were 23.89 % and 76.11 % in Trapa starch and 15.70 % and 84.30 % in Nelumbo starch, respectively. Fourier-transform infrared spectroscopy identified both as polysaccharides. The characteristic absorption bands assigned to the stretching of OH groups (3324 cm-1; 3280 cm-1), the asymmetric and symmetric stretching of aliphatic chain groups (2925 cm-1; 2854 cm-1), the bending vibration of CHO groups (1149 cm-1; 1144 cm-1) were present in both the starch samples, with the exception of CH3 which could not be detected in Trapa natans starch. X-ray diffraction confirmed hexagonal and orthorhombic crystal structures in Nelumbo nucifera and Trapa natans starch. Scanning electron microscopy revealed a smooth oval and a rough cuboidal shape for lotus and chestnut starch, respectively. Rheological analysis showed that both starch solutions exhibited gel behavior, with Trapa showing stronger gel behavior after the crossover point. These results suggest potential applications in various industries, including the food industry and beyond.
Collapse
Affiliation(s)
- Shahida Naseem
- Department of Environmental Science, School of Earth and Environmental Sciences, University of Kashmir, Srinagar, India
| | - Sami Ullah Bhat
- Department of Environmental Science, School of Earth and Environmental Sciences, University of Kashmir, Srinagar, India.
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar, India
| | | |
Collapse
|
5
|
Kumar V, Kumarasamy V, Bhatt P, Dixit R, Kumar M, Shukla CP, Subramaniyan V, Kumar S. Ultrasound assisted techniques for starch modification to develop novel drug delivery systems: A comprehensive study. J BIOACT COMPAT POL 2024; 39:279-297. [DOI: 10.1177/08839115241249143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Starch derived from plants plays an essential role in pharmaceuticals due to its components Amylose and Amylopectin, which form essential granules for drug delivery. Its biocompatibility and cost-effectiveness make it indispensable in pharmaceutical formulations, facilitating controlled drug release and tablet breakdown. The effectiveness and safety of drug formulations are often hindered by challenges such as low solubility and stability. In order to overcome these obstacles, current research is focused on modifying the properties of starch. The goal is to improve its solubility, swelling, erosion, stability, and ability to release drugs. A promising solution that has emerged is ultrasound-based modification. This technique has shown great potential in transforming starch granules, leading to improved solubility, degradability, and control over drug release. Not only is this method efficient and quick, but it also has the added benefit of being eco-friendly. This discussion will explore the mechanisms behind the modification of starch based on ultrasound, delving into both the physical and chemical changes that occur in starch granules. The analysis explores the utilization of modified starch induced by ultrasound in the field of drug delivery, investigating its stability and compatibility with biological systems. By exploring the capabilities and difficulties associated with the use of ultrasound to change starch for the delivery of drugs, we highlighted its potential as a leading and effective methodology.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Vinoth Kumarasamy
- Department of Parasitology & Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Pankaj Bhatt
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar, Uttarakhand, India
- Lloyd Institute of Management and Technology, Greater Noida, Uttar Pradesh, India
| | - Raghav Dixit
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Mukesh Kumar
- Department of Botany and Microbiology, Gurukul Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | | | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sunil Kumar
- Gurukul Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| |
Collapse
|
6
|
Dhull SB, Chandak A, Chawla P, Goksen G, Rose PK, Rani J. Modifications of native lotus (Nelumbo nucifera G.) rhizome starch and its overall characterization: A review. Int J Biol Macromol 2023; 253:127543. [PMID: 37866555 DOI: 10.1016/j.ijbiomac.2023.127543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Lotus (Nelumbo nucifera G.) rhizomes are an under-utilized and sustainable starch source that constitutes up to 20 % starch. The review mainly focused on the extraction methods of starch, the chemical composition of LRS, and techno-functional characteristics such as swelling power, solubility, in vitro digestibility, pasting property, and gelatinization is highlighted in LRS review. Lotus rhizome starch (LRS) is also used as a water retention agent, thickening, gelling, stabilizing, and filling in food and non-food applications. Native starch has limited functional characteristics in food applications so by modifying the starch, functional characteristics are enhanced. Single and dual treatment processes are available to enhance microstructural properties, resistant starch, techno-functional, morphological, and, film-forming properties. Compared with other starch sources, there is a lack of systematic information on the LRS. Many industries are interested in developing food products based on starch such as nanoparticles, hydrogels, edible films, and many others. Additionally, there are several recommendations to improve the applications in the food industry. Finally, we provide an outlook on the future possibility of LRS.
Collapse
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial zone, Tarsus University, 33100 Mersin, Turkey
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| |
Collapse
|
7
|
Liewchirakorn P, Ngamchuea K. Benign electrolytic modifications of starch: effects on functional groups and physical properties. RSC Adv 2023; 13:30040-30051. [PMID: 37842676 PMCID: PMC10570906 DOI: 10.1039/d3ra06382h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
Herein, a low-cost electrolytic technology for starch modification has been developed using abundant chloride salt as a redox mediator. The effects of electrolysis conditions on the in situ starch modification are investigated in detail, including chloride concentrations, applied voltages, and electrolysis durations. The modification mechanisms are determined by the type of chlorine species (Cl2, HClO, ClO-, and HCl) generated during the process. Following electrolysis, carbonyl and carboxyl groups ranging from 0.056 to 1.3 g/100 g of starch and 0.006 to 0.5 g/100 g of starch, respectively, were observed. Starch granule median size can be reduced from 15.3 μm to 13.5 μm. In addition to the pronounced changes in granule size, shape, and functional groups, electrolysis leads to increased moisture resistance, higher crystallinity, and substantial alterations in the pasting properties.
Collapse
Affiliation(s)
- Pitcha Liewchirakorn
- School of Chemistry, Institute of Science, Suranaree University of Technology 111 University Avenue, Suranaree, Muang Nakhon Ratchasima 30000 Thailand +66 (0) 44 224 637
- Institute of Research and Development, Suranaree University of Technology 111 University Avenue, Suranaree, Muang Nakhon Ratchasima 30000 Thailand
| | - Kamonwad Ngamchuea
- School of Chemistry, Institute of Science, Suranaree University of Technology 111 University Avenue, Suranaree, Muang Nakhon Ratchasima 30000 Thailand +66 (0) 44 224 637
| |
Collapse
|
8
|
Kunyanee K, Phadtaisong K, Na Chiangmai J, Parittapongsachai N, Van Ngo T, Luangsakul N, Sungsinchai S. Improving the swelling capacity of granular cold-water rice starch by ultrasound-assisted alcoholic-alkaline treatment. ULTRASONICS SONOCHEMISTRY 2023; 98:106506. [PMID: 37418950 PMCID: PMC10359937 DOI: 10.1016/j.ultsonch.2023.106506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023]
Abstract
The aim of this study was to determine the ability to improve the capacity of cold swelling and cold-water solubility of rice starch by ultrasonic-assisted alcohol-alkaline and alcohol-alkaline methods. To achieve this, ultrasound powers (U) were varied (30%, 70%, 100%) under the granular cold-water swelling starch (GCWSS) preparation (GCWSS + 30 %U, GCWSS + 70 %U, and GCWSS + 100 %U). The effects of these methods on morphological, pasting properties, amylose content, ratio of 1047/1022 spectra by FTIR, turbidity, freeze-thaw stability, and gel texture were also studied and compared. The results showed that the surface of GCWSS granules presented a honeycomb especially GCWSS + U treatments exhibited more porous on the surface of starch granules. The cold swelling power and solubility of GCWSS + U samples were increased which confirmed by reducing ratio of ordered structure to amorphous structure of starch, and turbidity was also decreased. Moreover, pasting temperature, breakdown, final viscosity, and setback decreased while peak viscosity increased as measured using a Rapid Visco Analyzer. The freeze-thaw stability of GCWSS + U was more resistant to syneresis than GCWSS under repeated freeze-thaw cycles. The reduction of gel hardness and springiness was observed using Texture Analyzer. These changes were enhanced with increasing ultrasound powers. Thus, the results indicate that the different ultrasound-assisted alcohol-alkaline treatments for preparing GCWSS show an effective use in the preparation of GCWSS with improved cold-water swelling and reduced retrogradation of rice starch.
Collapse
Affiliation(s)
- Kannika Kunyanee
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Kanyarak Phadtaisong
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Jutarat Na Chiangmai
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Natch Parittapongsachai
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Tai Van Ngo
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| | - Sirada Sungsinchai
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
9
|
Evaluation of the technological properties of rice starch modified by high hydrostatic pressure (HHP). INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Bangar SP, Dunno K, Dhull SB, Kumar Siroha A, Changan S, Maqsood S, Rusu AV. Avocado seed discoveries: Chemical composition, biological properties, and industrial food applications. Food Chem X 2022; 16:100507. [PMID: 36573158 PMCID: PMC9789361 DOI: 10.1016/j.fochx.2022.100507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
The processing industry discards avocado seeds, which increases production and ultimately pollutes the environment. It would be advantageous to handle these waste by-products both economically and environmentally. Avocado seeds are rich in polysaccharides, proteins, lipids, vitamins, minerals, and other bioactive substances. The nutritional and phytochemical composition of avocado seeds has been well studied and discussed. Avocado-seed extracts also have many health-related bioactive properties, such as anti-hyperglycaemic, anticancer, anti-hypercholesterolemia, antioxidant, anti-inflammatory, and anti-neurogenerative effects are clearly demonstrated how these properties can be used to formulate or fortify food. The health-promoting properties of avocado seeds have been studied. These properties are attributed to various phytochemicals, such as acetogenin, catechin, epicatechin, procyanidin B1, estragole, etc. Additionally, items made from valorized avocado seeds that people can consume have been explored. The best applications of valorized by-products have been created for the pharmaceutical, functional food, and nutraceutical sectors while considering quality and safety. More clinical testing and product development research are required to prove the effectiveness of avocado seeds.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, SC 29634, USA,Corresponding authors at: Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania.
| | - Kyle Dunno
- Department of Packaging Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa-125055, India
| | - Anil Kumar Siroha
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa-125055, India
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR – Central Potato Research Institute, Shimla 171001, India
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania,Animal Science and Biotechnology Faculty, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania,Corresponding authors at: Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania.
| |
Collapse
|