1
|
Xu B, Yang X, Zhao J, Yu B, Li J, Zhu X. Effects of mixed fermentation on the flavor quality and in vitro antioxidant activity of Zaosu pear-Merlot grape composite alcoholic beverage. Food Chem X 2025; 25:102128. [PMID: 39829995 PMCID: PMC11741023 DOI: 10.1016/j.fochx.2024.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025] Open
Abstract
In this study, a mixed fermentation strategy using grape-blended pear juice co-inoculated with Metschnikowia pulcherrima 346 and Saccharomyces cerevisiae ES488 was used to characterize the modifications of the flavor and antioxidant activity of Zaosu pear-Merlot grape alcoholic beverage. The optimum fermentation parameters identified using a fuzzy mathematical sensory evaluation model were an initial pH of 4.22, a ratio of M. pulcherrima 346 and S. cerevisiae ES488 inoculated 1.13:1, sequential inoculation time 47.02 h and making temperature 19 °C. The optimal mixed fermentation increased the content of terpenes and ethyl esters in pear-grape beverage by 16.5 % and 11.2 % respectively, enhancing floral and fruity aromas and attaining the highest sensory score. Due to the accumulation of flavonoid, anthocyanin, and phenol, the optimized alcoholic beverage exhibited the highest DPPH (97.6 %) and OH (93.3 %) radical scavenging rate as well as iron ion reducing power (3.25), which is conducive to extending the shelf life of beverages.
Collapse
Affiliation(s)
- Binyan Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xueshan Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jie Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Baihan Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiaxin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xia Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Cheng Y, Geng S, Zhang J, Zhao X, Jiang J, Liang Y, Mu H, Li W, Qin Y, Liu Y, Song Y. A comprehensive study on fermentation and aroma contributions of Torulaspora delbrueckii in diverse wine varieties: Insights from pure and co-fermentation studies. Food Res Int 2025; 199:115340. [PMID: 39658146 DOI: 10.1016/j.foodres.2024.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
As a well-commercialized and utilized non-Saccharomyces yeast, Torulaspora delbruineckii is gaining increasing relevance in the winemaking industry. However, its ability to produce distinctive aromas in wine has been inconsistently reported in the literature. This study aimed to evaluate the fermentation performance and aroma properties of T. delbrueckii isolates through pure and co-fermentation with Saccharomyces cerevisiae across eight different wine varieties: Merlot, Zidaifu, Petit Verdot, Marselan, Italian Riesling, Sauvignon Blanc, Ugni Blanc, and Petit Manseng. A comprehensive analysis using HS-SPME-GC-MS, OPLS-DA, and Spearman's correlation analysis was conducted. Key findings include: (1) The strain T. delbrueckii R12 exhibited higher extracellular enzyme activity compared to S. cerevisiae CECA and demonstrated superior sugar tolerance compared to six other native T. delbrueckii strains. (2) T. delbrueckii R12 exhibited strong fermentative capability, completing fermentation in 23 days across the eight wines, producing lower levels of acetic acid (0 ∼ 0.8 g/L reduction) and ethanol (0.1 ∼ 4.0 % v/v reduction), and higher levels of glycerol (0.1 ∼ 0.9 g/L increase) in the majority of wines. (3) Co-fermentation with T. delbrueckii and S. cerevisiae altered glycosidase activity, enhancing the varietal aroma intensity and complexity of the eight wines by releasing C6 compounds, terpenes and esters, and reducing higher alcohols and fatty acids. (4) The aroma contribution of T. delbrueckii R12 was variety-dependent, with isobutyl alcohol, isopentyl alcohol, 1-pentanol, and 1-propanol prevalent in red wines, and (Z)-2-hexen-1-ol more associated with white wines. Additionally, T. delbrueckii R12 consistently enhanced aromas in all eight experimental wines by increasing levels of 1-hexanol, farnesyl alcohol, linalool, citronellol, ethyl acetate, isobutyric acid and decanoic acid, while decreasing 1-pentanol, octanoic acid, isoamyl acetate, and ethyl laurate. Seven of the increased compounds were identified as signature aromas of T. delbrueckii R12, potentially contributing grass, floral, muscat, rose, fruit, caramel and buttery notes to the wines. This study confirms the significant role of T. delbrueckii in winemaking and wine aroma, resolving previous discrepancies in the literature. It provides new knowledge for innovating and diversifying wine production across various grape varieties.
Collapse
Affiliation(s)
- Yichao Cheng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shijin Geng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Yangling Vocational & Technical College, Yangling, Shaanxi 712100, China
| | - Jin Zhang
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Xixi Zhao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| | - Jiao Jiang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| | - Yanying Liang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haibin Mu
- Administrative Committee of Wine Industry Zone of Ningxia Helan Mountains' East Foothill, Yinchuan, Ningxia, 750000, China
| | - Wenchao Li
- Administrative Committee of Wine Industry Zone of Ningxia Helan Mountains' East Foothill, Yinchuan, Ningxia, 750000, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China.
| |
Collapse
|
3
|
Huang Y, Jin J, Cao W, Wang Y. Identification and Biotransformation of Volatile Markers During the Early Stage of Zygosaccharomyces rouxii and Zygosaccharomyces mellis Contamination in Acacia Honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23422-23437. [PMID: 39392611 DOI: 10.1021/acs.jafc.4c06157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
To address the volatile markers and their biotransformation during the early stage of Zygosaccharomyces spp. contamination in acacia honey, headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and chemometric analyses were used to explore the variation of volatile compounds. A total of 36 and 35 volatile compounds were identified before and after contamination of Zygosaccharomyces rouxii and Zygosaccharomyces mellis, respectively. Methyl butyrate and 2-methyl-3-pentanone could be used as volatile markers of Z. rouxii and Z. mellis-contaminated honey, which were both specific products of the yeast's own fermentation. 2,5-Dimethylbenzaldehyde was identified as a volatile marker of Z. rouxii and Z. mellis-contaminated acacia honey, and it was a specific product resulting from the interaction of yeast and acacia honey. In addition, β-damascenone could be determined as a potential volatile marker after Z. rouxii-contaminated acacia honey. Methyl 2-methylbutyrate was used as a potential volatile marker in the high-concentration groups of Z. rouxii and Z. mellis. The content ranges of methyl butyrate, 2-methyl-3-pentanone, and 2,5-dimethylbenzaldehyde in four samples were 6.62-14.59, 3.15-5.42, and 52.52-215.19 μg/mL, respectively. The variation of volatile markers during the early stage of osmotolerant yeast contamination provided a theoretical basis for the use of HS-SPME-GC-MS for the rapid detection of acacia honey deterioration while reducing economic losses.
Collapse
Affiliation(s)
- Yuanyuan Huang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Jing Jin
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Yin Wang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| |
Collapse
|
4
|
Ivić S, Jeromel A, Kozina B, Prusina T, Budić-Leto I, Boban A, Vasilj V, Jagatić Korenika AM. Sequential Fermentation in Red Wine cv. Babić Production: The Influence of Torulaspora delbrueckii and Lachancea thermotolerans Yeasts on the Aromatic and Sensory Profile. Foods 2024; 13:2000. [PMID: 38998506 PMCID: PMC11241832 DOI: 10.3390/foods13132000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
This research aimed to analyze the impact of two different non-Saccharomyces yeast species on the aromatic profile of red wines made from the cv. Babić (Vitis vinifera L.) red grape variety. The grapes were obtained from two positions in the Middle and South of Dalmatia. This study compared a control treatment with the Saccharomyces cerevisiae (Sc) strain as a type of sequential inoculation treatment with Lachancea thermotolerans (Lt x Sc) and Torulaspora delbrueckii (Td x Sc). The focus was on the basic wine parameters and volatile aromatic compound concentrations determined using the SPME-Arrow-GC/MS method. The results revealed significant differences in cis-linalool oxide, geraniol, neric acid, and nerol, which contribute to the sensory profile with floral and rose-like aromas; some ethyl esters, such as ethyl furoate, ethyl hexanoate, ethyl lactate, ethyl 2-hydroxy-3-methylbutanoate, ethyl 3-hydroxy butanoate, diethyl glutarate, and diethyl succinate, contribute to the aromatic profile with fruity, buttery, overripe, or aging aromas. A sensory evaluation of wines confirmed that Td x Sc treatments exhibited particularly positive aromatic properties together with a more intense fullness, harmony, aftertaste, and overall impression.
Collapse
Affiliation(s)
- Stipe Ivić
- Institute for Adriatic Cultures and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Ana Jeromel
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Bernard Kozina
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Tihomir Prusina
- Faculty of Agriculture and Food Technology, University of Mostar, Biskupa Čule 10, 88000 Mostar, Bosnia and Herzegovina
| | - Irena Budić-Leto
- Institute for Adriatic Cultures and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Ana Boban
- Institute for Adriatic Cultures and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia
| | - Višnja Vasilj
- Faculty of Agriculture and Food Technology, University of Mostar, Biskupa Čule 10, 88000 Mostar, Bosnia and Herzegovina
| | | |
Collapse
|
5
|
Ma W, Liang Z, He B, Wu Y, Chen Y, He Z, Chen B, Lin X, Luo L. Changes in the characteristic volatile aromatic compounds in tuna cooking liquid during fermentation and deodorization by Lactobacillus plantarum RP26 and Cyberlindnera fabianii JGM9-1. Food Chem X 2023; 20:100900. [PMID: 38144760 PMCID: PMC10739757 DOI: 10.1016/j.fochx.2023.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023] Open
Abstract
Tuna cooking liquid has unpleasant aroma. In our previous studies, Cyberlindnera fabianii JGM9-1 and Lactobacillus plantarum RP26 demonstrated the ability to degrade this unpleasant aroma. However, the mechanism of microbial deodorization remains unclear. In this study, tuna cooking liquid was fermented using JGM9-1 alone, RP26 alone, and a combination of both strains. Changes in volatile aromatic compounds during fermentation were analyzed using HS-SPME-GC/MS. The unpleasant aroma of tuna cooking liquid were nine characteristic aromatic compounds associated with fishy, stinky, and greasy aromas. Furthermore, we found that the fermentation of microbes removed these unpleasant aromatic compounds and replaced them with pleasant aromatic compounds that contributed to fruity, grassy, and floral aromas. Finally, we screened 21 strong pairwise correlations between the production and consumption of characteristic volatile aromatic compounds by RP26 and JGM9-1, through HCA, VIP, OAV and Spearman's pairwise correlation analysis. These results help to clarify the metabolic mechanisms of microbial deodorization in tuna cooking liquid.
Collapse
Affiliation(s)
- Wenjing Ma
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Zhangcheng Liang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Bing He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Yuxi Wu
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Yan Chen
- Fuzhou Hongdong Foods Co., Ltd, Fuzhou, Fujian, China
- Fujian Shenlan Biotechnology Co., Ltd, Fuzhou, Fujian, China
| | - Zhigang He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Bingyan Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Xiaozi Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
- Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, China
| | - Lianyu Luo
- Fuzhou Hongdong Foods Co., Ltd, Fuzhou, Fujian, China
- Fujian Shenlan Biotechnology Co., Ltd, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Ma Y, Peng S, Mi L, Li M, Jiang Z, Wang J. Correlation between fungi and volatile compounds during different fermentation modes at the industrial scale of Merlot wines. Food Res Int 2023; 174:113638. [PMID: 37981360 DOI: 10.1016/j.foodres.2023.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023]
Abstract
Elucidation of the relationship between fungal community development and dynamic changes in volatile components during fermentation is of great significance in controlling wine production. However, such studies on an industrial scale are rarely reported. In this study, fungal community succession during spontaneous fermentation (SPF) and inoculation fermentation (INF) of Merlot wine was monitored by a research strategy combining culture-dependent and culture-independent methods. The volatile compounds were monitored during SPF and INF by headspace solid-phase micro-extraction coupled with gas chromatography-mass spectrometry technology. The Spearman correlation coefficient was also used to investigate the interplay between fungal communities and volatile compounds. We found that fungal community diversity in SPF decreased as fermentation progressed but was significantly higher than that of INF. Starmerella and Kazachstania were the dominant non-Saccharomyces genera in Merlot wine during SPF. However, the presence of commercial yeasts and sulphur dioxide led to a sharp decrease or the disappearance of non-Saccharomyces genera during INF. Spearman correlation analysis revealed that all major volatiles were positively correlated with most functional microbiotas except P. fermentans, S. bacillaris, E. necator, and D. exigua in INF. In SPF, most non-Saccharomyces were negatively correlated with core volatiles, whereas K. humilis, M. laxa, P. kluyveri, and A. japonicus were positively correlated with the major volatiles, especially some higher alcohols (isopentol, heptanol) and terpenes (linalool, citronellol). S. cerevisiae was positively correlated with most of the main volatile substances except ethyl isovalerate and isoamyl acetate. These findings provide a reference for comprehending the diverse fermentation methods employed in the wine industry and improving the quality of Merlot wines.
Collapse
Affiliation(s)
- Yuwen Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Shuai Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Lan Mi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Min Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Zhanzhan Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China.
| |
Collapse
|
7
|
Stanzer D, Hanousek Čiča K, Blesić M, Smajić Murtić M, Mrvčić J, Spaho N. Alcoholic Fermentation as a Source of Congeners in Fruit Spirits. Foods 2023; 12:1951. [PMID: 37238769 PMCID: PMC10217768 DOI: 10.3390/foods12101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Fermentation is a crucial process in the production of alcoholic beverages such as spirits, which produces a number of volatile compounds due to the metabolic activities of yeast. These volatile compounds, together with the volatile components of the raw materials and the volatile compounds produced during the distillation and aging process, play a crucial role in determining the final flavor and aroma of spirits. In this manuscript, we provide a comprehensive overview of yeast fermentation and the volatile compounds produced during alcoholic fermentation. We will establish a link between the microbiome and volatile compounds during alcoholic fermentation and describe the various factors that influence volatile compound production, including yeast strain, temperature, pH, and nutrient availability. We will also discuss the effects of these volatile compounds on the sensory properties of spirits and describe the major aroma compounds in these alcoholic beverages.
Collapse
Affiliation(s)
- Damir Stanzer
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (D.S.); (K.H.Č.)
| | - Karla Hanousek Čiča
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (D.S.); (K.H.Č.)
| | - Milenko Blesić
- Faculty of Agriculture and Food Sciences, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (M.B.); (M.S.M.); (N.S.)
| | - Mirela Smajić Murtić
- Faculty of Agriculture and Food Sciences, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (M.B.); (M.S.M.); (N.S.)
| | - Jasna Mrvčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (D.S.); (K.H.Č.)
| | - Nermina Spaho
- Faculty of Agriculture and Food Sciences, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina; (M.B.); (M.S.M.); (N.S.)
| |
Collapse
|