1
|
Ostróżka-Cieślik A, Michalak M, Bryś T, Kudła M. The Potential of Hydrogel Preparations Containing Plant Materials in Supporting the Treatment of Vaginal and Vulvar Infections-Current State of Knowledge. Polymers (Basel) 2025; 17:470. [PMID: 40006132 PMCID: PMC11859247 DOI: 10.3390/polym17040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Vaginal hydrogels are a modern alternative to solid (tablets, globules) and other semi-solid forms of medication (ointments, creams) in the control of pathogenic microorganisms in diseases of the female reproductive tract. This review aims to summarize the current state of knowledge regarding the efficacy of hydrogels containing plant materials in the treatment of vaginal and vulvar infections. New therapies are essential to address the growing antimicrobial resistance crisis. Google Scholar, Web of Science, Cochrane, and Medline (PubMed) databases were searched. Twenty-five studies were included in the review, including basic, pre-clinical, and clinical studies. The results obtained confirmed the therapeutic potential of plant raw materials embedded in the polymer matrix of hydrogels. However, due to the small number of clinical trials conducted, further research in this area is needed.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia,41-200 Sosnowiec, Poland
| | - Monika Michalak
- Department of Pharmaceutical Sciences, Medical College, Jan Kochanowski University, 25-317 Kielce, Poland;
| | - Tomasz Bryś
- Clinical Department of Perinatology and Oncological Gynaecology, Medical University of Silesia, 41-200 Sosnowiec, Poland; (T.B.); (M.K.)
| | - Marek Kudła
- Clinical Department of Perinatology and Oncological Gynaecology, Medical University of Silesia, 41-200 Sosnowiec, Poland; (T.B.); (M.K.)
| |
Collapse
|
2
|
Stefi AL, Chalkiadaki M, Dimitriou K, Mitsigiorgi K, Gkikas D, Papageorgiou D, Ntroumpogianni GC, Vassilacopoulou D, Halabalaki M, Christodoulakis NS. Oregano Young Plants Cultured at Low Temperature Reveal an Enhanced Healing Effect of Their Extracts: Anatomical, Physiological and Cytotoxicity Approach. Metabolites 2025; 15:103. [PMID: 39997728 PMCID: PMC11857167 DOI: 10.3390/metabo15020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The germination and early development of Origanum vulgare L. subsp. hirtum (Link) Ietswaart (Greek oregano) were studied to assess the plant's response to different temperatures. METHODS After germination, seedlings were cultivated in control (25 °C) and cold (15 °C) chambers with standard growth parameters. Comparative analyses of plant morphology and leaf anatomy were conducted to identify structural modifications induced by different temperatures. Physiological evaluations, including photosynthetic pigment measurements, phenolic content, and antioxidant activity, were performed to assess differences between the plants grown under the two temperature conditions. Methanolic extracts from the leaves were tested for cytotoxicity on MCF-7 breast adenocarcinoma cells and SH-SY5Y neuroblastoma cells, as well as on nine microbial strains. Additionally, biomarkers from the leaves affected by temperature changes were determined using LC-HRMS/MS analysis. RESULTS Comparative analyses revealed distinct structural and physiological modifications under cold conditions. The methanolic extracts from plants grown at 15 °C exhibited notably higher cytotoxic activity in both cell lines but demonstrated no activity against microbial strains. The results highlight the influence of low temperature on enhancing the bioactive properties of Greek oregano. CONCLUSIONS The findings provide valuable insights into the environmental adaptability of oregano, demonstrating the impact of low temperature on its bioactive properties. The therapeutic potential of methanolic extracts cultured at 15 °C is imprinted in cytotoxicity in SH-SY5Y and MCF-7 cells and the absence of any activity against microbial strains.
Collapse
Affiliation(s)
- Aikaterina L. Stefi
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.D.); (K.M.); (D.G.); (D.P.); (G.C.N.); (N.S.C.)
| | - Maria Chalkiadaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.C.); (M.H.)
| | - Katerina Dimitriou
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.D.); (K.M.); (D.G.); (D.P.); (G.C.N.); (N.S.C.)
| | - Konstantina Mitsigiorgi
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.D.); (K.M.); (D.G.); (D.P.); (G.C.N.); (N.S.C.)
| | - Dimitrios Gkikas
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.D.); (K.M.); (D.G.); (D.P.); (G.C.N.); (N.S.C.)
| | - Danae Papageorgiou
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.D.); (K.M.); (D.G.); (D.P.); (G.C.N.); (N.S.C.)
| | - Georgia C. Ntroumpogianni
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.D.); (K.M.); (D.G.); (D.P.); (G.C.N.); (N.S.C.)
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Athens, Greece; (M.C.); (M.H.)
| | - Nikolaos S. Christodoulakis
- Section of Botany, Department of Biology, Faculty of Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.D.); (K.M.); (D.G.); (D.P.); (G.C.N.); (N.S.C.)
| |
Collapse
|
3
|
Baz MM, Selim AM, Radwan IT, Alkhaibari AM, Gattan HS, Alruhaili MH, Alasmari SM, Gad ME. Evaluating larvicidal, ovicidal and growth inhibiting activity of five medicinal plant extracts on Culex pipiens (Diptera: Culicidae), the West Nile virus vector. Sci Rep 2024; 14:19660. [PMID: 39191818 PMCID: PMC11350158 DOI: 10.1038/s41598-024-69449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Mosquitoes, one of the deadliest animals on the planet, cause millions of fatalities each year by transmitting several human illnesses. Synthetic pesticides were previously used to prevent the spread of diseases by mosquitoes, which was effective in protecting humans but caused serious human health problems, environmental damage, and developed mosquito pesticide resistance. This research focuses on exploring new, more effective, safer, and environmentally friendly compounds to improve mosquito vector management. Phytochemicals are possible biological agents for controlling pests and many are target-specific, rapidly biodegradable, and eco-friendly. The potential of extracts of Lantana camara, Melia azedarach, Nerium oleander, Ricinus communis, and Withania somnifera against 3rd instar Culex pipiens (Common house mosquito) larvae was evaluated. Methanol extracts had more toxic effects against Cx. pipiens larvae (95-100%, 24 h post-treatment) than aqueous extracts (63-91%, 24 h post-treatment). The methanol extracts of Nerium oleander (LC50 = 158.92 ppm) and Ricinus communis (LC50 = 175.04 ppm) were very effective at killing mosquito larvae, 24 h after treatment. N. oleander (LC50 = 373.29 ppm) showed high efficacy in aqueous plant extracts. Among the different extracts of the five plants screened, the methanol extract of R. communis recorded the highest ovicidal activity of 5% at 800 ppm concentration. Total developmental duration and growth index were highly affected by R. communis and M. azedarach methanol extracts. In field tests it was clear that plant extracts decreased mosquito larval density, especially when mixed with mosquito Bti briquette, with stability up to seven days for N. oleander. GC-MS results showed that the methanol extract had a higher number of chemical compounds, particularly with more terpene compounds. A high-performance liquid chromatography (HPLC) technique was used to detect the existence of non-volatile polyphenols and flavonoids. All five methanol extracts showed high concentrations of active ingredients such as gallic acid, chlorogenic acid (more than 100 μg/ml) and the rosmarinic acid was also found in all the five extracts in addition to 17 active polyphenols and flavonoids presented at moderate to low concentrations. Molecular modeling of 18 active ingredients detected by the HPLC were performed to the vicinity of one of the fatty acid binding proteins of lm-FABP (PDB code: 2FLJ). Rutin, Caffeic acid, coumaric acid and rosmarinic acid which presented densely in R. communis and N. oleander showed multiple and stable intermolecular hydrogen bonding and π-π stacking interactions. The inhibition ability of the fatty acid binding protein, FABP4, was evaluated with remarkable receptor inhibition evident, especially with R. communis and N. oleander having inhibitory concentrations of IC50 = 0.425 and 0.599 µg/mL, respectively. The active phytochemical compounds in the plants suggest promising larvicidal and ovicidal activity, and have potential as a safe and effective alternative to synthetic insecticides.
Collapse
Affiliation(s)
- Mohamed M Baz
- Entomology Department, Faculty of Science, Benha University, Benha, 13518, Qalyubiya, Egypt
| | - Abdelfattah M Selim
- Department of Animal Medicine (Infectious Diseases), College of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, 11835, Egypt.
| | - Abeer Mousa Alkhaibari
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Saeed M Alasmari
- Department of Biology, Faculty of Science and Arts, Najran University, 1988, Najran, Saudi Arabia
| | - Mohammed E Gad
- Department of Zoology and Entomology, Faculty of Science, Al Azhar University, Nasr City, 11884, Cairo, Egypt
| |
Collapse
|
4
|
Ben Elhadj Ali I, Yangui I, Raadani A, Guetat A, Hmissi S, Flihi J, Boussaid M, Messaoud C. Thymus algeriensis Boiss. et Reut., a north African endemic plant species: genetic diversity and population structure as assessed by molecular markers, a pioneer step for conservation implications. Mol Biol Rep 2024; 51:534. [PMID: 38642172 DOI: 10.1007/s11033-024-09473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Thymus algeriensis Boiss. et Reut. is one of the most widespread North African species of the genus Thymus L. The species is subshrub growing primarily in subtropical biome of Morocco, Algeria, Tunisia and Libya. In Tunisia, the plant species is under high pressure of anthropogenic activities including over-collecting. The assessment of genetic diversity and population structure of T. algeriensis is a pioneer step to retrace its evolutionary history and to perform appropriate conservation strategies of the plant species. METHODS AND RESULTS Seven wild populations growing, widely, in different bioclimatic zones were selected and analysed using two molecular markers systems. Fifteen Simple Sequence Repeats (SSRs) and fifteen Inter-Simple Sequence Repeats (ISSRs) were used to characterize genetically 140 different genotypes. The results showed a high molecular variation within populations and among the studied genotypes. The intra-populations genetic diversity revealed by SSRs was higher (P = 80.95%, Na = 2.143 and He = 0.364) than that based on ISSRs (P = 78.12%, Na = 1.632, He = 0.265 and I = 0.398). As demonstrated by inbreeding coefficients, a significant level of differentiation and a low level of gene flow were detected among studied populations (FST = 0.161 for SSRs and ΦST = 0.197 for ISSRs). Furthermore, the results of ISSRs marker suggest land strips as barriers in population genetic structure. While SSRs marker reflects a relatively structured bioclimatic patterns of studied populations. The Bayesian analysis showed a specific adaptation of populations to local environments. CONCLUSIONS The used molecular markers (ISSRs and SSRs) seem to be effective in deciphering genetic polymorphism of Tunisian genotypes of T. algeriensis. Therefore, the genetic structure of the studied genotypes could constitute a starting point for further conservation, characterization and breeding programs.
Collapse
Affiliation(s)
- Imen Ben Elhadj Ali
- Laboratory of Nanobiotechnology and Valorisation of Medicinal Phytoresources, National Institute of Applied Sciences and Technology, Carthage University, Tunis Cedex B.P. 676, Tunis, 1080, Tunisia.
- Higher Institute of Biotechnology of Beja, Jendouba University, Beja, Tunisia.
| | - Islem Yangui
- Laboratory of Nanobiotechnology and Valorisation of Medicinal Phytoresources, National Institute of Applied Sciences and Technology, Carthage University, Tunis Cedex B.P. 676, Tunis, 1080, Tunisia
| | - Anhar Raadani
- Laboratory of Nanobiotechnology and Valorisation of Medicinal Phytoresources, National Institute of Applied Sciences and Technology, Carthage University, Tunis Cedex B.P. 676, Tunis, 1080, Tunisia
| | - Arbi Guetat
- Laboratory of Nanobiotechnology and Valorisation of Medicinal Phytoresources, National Institute of Applied Sciences and Technology, Carthage University, Tunis Cedex B.P. 676, Tunis, 1080, Tunisia
- College of Sciences, Department of Biological Sciences, Northern Border University, Arar, Saudi Arabia
| | - Soumaya Hmissi
- Laboratory of Nanobiotechnology and Valorisation of Medicinal Phytoresources, National Institute of Applied Sciences and Technology, Carthage University, Tunis Cedex B.P. 676, Tunis, 1080, Tunisia
| | - Jihène Flihi
- Laboratory of Nanobiotechnology and Valorisation of Medicinal Phytoresources, National Institute of Applied Sciences and Technology, Carthage University, Tunis Cedex B.P. 676, Tunis, 1080, Tunisia
| | - Mohamed Boussaid
- Laboratory of Nanobiotechnology and Valorisation of Medicinal Phytoresources, National Institute of Applied Sciences and Technology, Carthage University, Tunis Cedex B.P. 676, Tunis, 1080, Tunisia
| | - Chokri Messaoud
- Laboratory of Nanobiotechnology and Valorisation of Medicinal Phytoresources, National Institute of Applied Sciences and Technology, Carthage University, Tunis Cedex B.P. 676, Tunis, 1080, Tunisia
| |
Collapse
|
5
|
Gruskiene R, Lavelli V, Sereikaite J. Application of inulin for the formulation and delivery of bioactive molecules and live cells. Carbohydr Polym 2024; 327:121670. [PMID: 38171683 DOI: 10.1016/j.carbpol.2023.121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Inulin is a fructan biosynthesized mainly in plants of the Asteraceae family. It is also found in edible vegetables and fruits such as onion, garlic, leek, and banana. For the industrial production of inulin, chicory and Jerusalem artichoke are the main raw material. Inulin is used in the food, pharmaceutical, cosmetic as well biotechnological industries. It has a GRAS status and exhibits prebiotic properties. Inulin can be used as a wall material in the encapsulation process of drugs and other bioactive compounds and the development of their delivery systems. In the review, the use of inulin for the encapsulation of probiotics, essential and fatty oils, antioxidant compounds, natural colorant and other bioactive compounds is presented. The encapsulation techniques, materials and the properties of final products suitable for the delivery into food are discussed. Research limitations are also highlighted.
Collapse
Affiliation(s)
- Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| |
Collapse
|
6
|
Weisany W, Yousefi S, Soufiani SP, Pashang D, McClements DJ, Ghasemlou M. Mesoporous silica nanoparticles: A versatile platform for encapsulation and delivery of essential oils for food applications. Adv Colloid Interface Sci 2024; 325:103116. [PMID: 38430728 DOI: 10.1016/j.cis.2024.103116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Essential oils (EOs) are biologically active and volatile substances that have found widespread applications in the food, cosmetics, and pharmaceutical industries. However, there are some challenges to their commercial utilization due to their high volatility, susceptibility to degradation, and hydrophobicity. In their free form, EOs can quickly evaporate, as well as undergo degradation reactions like oxidation, isomerization, dehydrogenation, or polymerization when exposed to light, heat, or air. Encapsulating EOs within mesoporous silica nanoparticles (MSNPs) could overcome these limitations and thereby broaden their usage. MSNPs may endow protection and slow-release properties to EOs, thereby extending their stability, enhancing their efficacy, and improving their dispersion in aqueous environments. This review explores and compares the design and development of different MSNP-based nanoplatforms to encapsulate, protect, and release EOs. Initially, a brief overview of the various types of available MSNPs, their properties, and their synthesis methods is given to better understand their roles as carriers for EOs. Several encapsulation technologies are then examined, including solvent-based and solvent-free methods. The suitability of each technology for EO encapsulation, as well as its impact on their stability and release, is discussed in detail. Opportunities and challenges for using EO-loaded MSNPs as preservatives, flavor enhancers, and antimicrobial agents in the food industry are then highlighted. Overall, this review aims to bridge a knowledge gap by providing a thorough understanding of EO encapsulation within MSNPs, which should facilitate the application of this technology in the food industry.
Collapse
Affiliation(s)
- Weria Weisany
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Shima Yousefi
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Solmaz Pourbarghi Soufiani
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Danial Pashang
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
7
|
Ortiz-Mendoza N, Martínez-Gordillo MJ, Martínez-Ambriz E, Basurto-Peña FA, González-Trujano ME, Aguirre-Hernández E. Ethnobotanical, Phytochemical, and Pharmacological Properties of the Subfamily Nepetoideae (Lamiaceae) in Inflammatory Diseases. PLANTS (BASEL, SWITZERLAND) 2023; 12:3752. [PMID: 37960108 PMCID: PMC10648697 DOI: 10.3390/plants12213752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Nepetoideae is the most diverse subfamily of Lamiaceae, and some species are well known for their culinary and medicinal uses. In recent years, there has been growing interest in the therapeutic properties of the species of this group regarding inflammatory illnesses. This study aims to collect information on traditional uses through ethnobotanical, pharmacological, and phytochemical information of the subfamily Nepetoideae related to inflammatory diseases. UNAM electronic resources were used to obtain the information. The analysis of the most relevant literature was compiled and organised in tables. From this, about 106 species of the subfamily are traditionally recognised to alleviate chronic pain associated with inflammation. Pharmacological studies have been carried out in vitro and in vivo on approximately 308 species belonging to the genera Salvia, Ocimum, Thymus, Mentha, Origanum, Lavandula, and Melissa. Phytochemical and pharmacological evaluations have been performed and mostly prepared as essential oil or high polarity extracts, whose secondary metabolites are mainly of a phenolic nature. Other interesting and explored metabolites are diterpenes from the abietane, clerodane, and kaurane type; however, they have only been described in some species of the genera Salvia and Isodon. This review reveals that the Nepetoideae subfamily is an important source for therapeutics of the inflammatory process.
Collapse
Affiliation(s)
- Nancy Ortiz-Mendoza
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria Coyoacán, Edificio D, 1° Piso, Circuito de Posgrados, Mexico City 04510, Mexico
| | - Martha Juana Martínez-Gordillo
- Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Emmanuel Martínez-Ambriz
- Instituto de Ecología, A.C., Red de Biodiversidad y Sistemática, Xalapa 91073, Veracruz, Mexico;
| | | | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico;
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
8
|
Souiy Z, Al-Shaikh TM, Alghamdi OA, Krifi B. Optimization of extraction yield, chemical composition, antioxidant, and antimicrobial activities of Thymus algeriensis Boiss. & Reut essential oils. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|