1
|
Hassan SA, Altemimi AB, Hashmi AA, Shahzadi S, Mujahid W, Ali A, Bhat ZF, Naz S, Nawaz A, Abdi G, Aadil RM. Edible crickets as a possible way to curb protein-energy malnutrition: Nutritional status, food applications, and safety concerns. Food Chem X 2024; 23:101533. [PMID: 39036474 PMCID: PMC11260028 DOI: 10.1016/j.fochx.2024.101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/12/2024] [Accepted: 06/02/2024] [Indexed: 07/23/2024] Open
Abstract
Protein malnutrition is a major public health concern in the developing world. The livestock products are a good source of high-quality protein, but the livestock industry is a source of pollution and one of the leading causes of climate change because the slaughtering of animals results in the accumulation of waste, offals, and several inedible body portions. The rapid increase in the human population and inadequate supply of traditional protein sources have driven a search for novel and alternative protein sources such as edible insects. This review extensively explores the nutritional value, allergenicity, and safety considerations associated with consuming common house crickets and other related insect species. A wide range of cricket protein-based products are currently available and provide some attractive options to the consumers such as protein-enriched bakery products and gluten-free bread for celiac patients. The cricket protein hydrolysates are used as preservatives to improve the stability of cheddar cheese and goat meat emulsions during storage. The risks associated with edible crickets and their products are bacteria, mycotoxins, polychlorinated dibenzodioxins, pesticide residues, heavy metals, and the presence of allergenic proteins.
Collapse
Affiliation(s)
- Syed Ali Hassan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ammar B. Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
| | - Adeel Asim Hashmi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sandal Shahzadi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Waqar Mujahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ahsan Ali
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Saima Naz
- Department of Food Science and Technology, Nur International University, 17 Km Raiwind Road, Lahore, Pakistan
| | - Ahmad Nawaz
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, 123, Muscat, Oman
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
2
|
Vanqa N, Mshayisa VV, Basitere M. Macrotermes subhylanus flour inclusion in biscuits: Effects on nutritional, sensorial and microbial characteristics. Heliyon 2024; 10:e32702. [PMID: 38975077 PMCID: PMC11226819 DOI: 10.1016/j.heliyon.2024.e32702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
As the world's population expands, edible insects have been proposed as a food source that might address issues related to nutrition, health, the environment, and the economy. This study aimed to create a novel biscuit by adding Macrotermes subhylanus (M. Subhylanus) flour to wheat flour in various concentrations (5,10, 15 and 20 %). The moisture content of the insect composite flours varied between 6.83 % and 7.76 %, whereas the moisture content of the biscuits ranged from 2.86 % to 7.90 %. A significant difference (p < 0.05) was noted in the protein content of both the composite flours and biscuits as the concentration of insect flour increased, with values ranging from 15.03 % to 21.52 % for the flours and 17.38 % to 20.63 % for the biscuits. The lightness (L*) of the composite flours significantly decreased (p < 0.05) with higher additions of edible insect flour, whereas the redness (a*) and yellowness (b*) attributes did not show any statistical differences (p > 0.05). The biscuits were generally darker than the composite flours, as indicated by substantially lower L* values. The water activity of the biscuits was between 0.44 and 0.67. Sensory evaluation revealed that the substitution level (up to 15 %) is ideal for preparing acceptable insect-based biscuits. The panellist perceived no significant differences (p > 0.05) in terms of the texture between the insect-enriched biscuits and the control, except for MZ-20. The absence of pathogenic microogranisms in all baked biscuits containing edible insect flour highlights the effectiveness of heat treatment, ensuring that the biscuits meet microbiological safety guidelines. Additionally, Macrotermes subhylanus flour shows promise as a novel functional ingredient for the food industry.
Collapse
Affiliation(s)
- Nthabeleng Vanqa
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Vusi Vincent Mshayisa
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Moses Basitere
- Academic Support Program for Engineering (ASPECT) in Cape Town, Centre of Higher Education Development University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
3
|
Gao Y, Chonpracha P, Li B, Ardoin R, Prinyawiwatkul W. The Impact of Information Presentation on Consumer Perceptions of Cricket-Containing Chocolate Chip Cookies. Foods 2024; 13:479. [PMID: 38338614 PMCID: PMC10855463 DOI: 10.3390/foods13030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
As a source of protein and other nutrients for a growing population, edible insect production offers environmental and sustainability advantages over traditional meat production. Although around 2 billion people consume insects worldwide, Western consumers are still reluctant to practice entomophagy, hindered largely by neophobia and negative emotions. In addition to sensory quality and safety, an informational component may be crucial to consumers' decision making involving insect consumption. In this study, three different information types, namely text, image, and a tangible product, were used to convey information about chocolate chip cookies (CCCs) containing cricket flour. The nature of the information was related to the ingredient usage level (5%), the type of insect (cricket), nutritional values, sustainability benefits, packaging, celebrity endorsement, and/or visual appearance of an actual product. Consumers' willingness to consume (WTC), acceptance, and purchase intent (PI) were measured in response to each informed condition. Once informed of the insect ingredient, all scores significantly (α = 0.05) dropped. The lowest WTC (1.97 ± 1.06, Text), acceptance (3.55 ± 2.23, Image), and PI (1.85 ± 1.05, Text) scores were found after identifying cricket as the insect ingredient. Compared to other informed conditions, the presentation of a real chocolate chip cookie containing insects achieved the highest scores on all affective scores (WTC: 3.4 ± 1.04, acceptance: 6.17 ± 1.89, PI: 3.07 ± 1.09). The greatest improvement in scores was observed after information about nutrition and sustainability benefits (based on ANOVA), which was more impactful for males than females (based on a t-test). Celebrity endorsement did not have a significant effect. The presentation of the actual CCC containing cricket flour (for visual observation only) significantly increased WTC, acceptance, and PI compared to presenting text and images alone. Acceptance, WTC, and certain information cues were significant predictors of PI for CCCs containing cricket flour.
Collapse
Affiliation(s)
- Yupeng Gao
- School of Nutrition and Food Sciences, Louisiana State University, Agricultural Center, Baton Rouge, LA 70803, USA; (Y.G.); (P.C.)
| | - Pitchayapat Chonpracha
- School of Nutrition and Food Sciences, Louisiana State University, Agricultural Center, Baton Rouge, LA 70803, USA; (Y.G.); (P.C.)
| | - Bin Li
- Department of Experimental Statistics, Louisiana State University, Agricultural Center, Baton Rouge, LA 70803, USA;
| | - Ryan Ardoin
- Food Processing and Sensory Quality Research Unit, Southern Regional Research Center, USDA-ARS, New Orleans, LA 70124, USA;
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University, Agricultural Center, Baton Rouge, LA 70803, USA; (Y.G.); (P.C.)
| |
Collapse
|
4
|
Han X, Li B, Puolanne E, Heinonen M. Hybrid Sausages Using Pork and Cricket Flour: Texture and Oxidative Storage Stability. Foods 2023; 12:1262. [PMID: 36981188 PMCID: PMC10048543 DOI: 10.3390/foods12061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
This study aimed to study the functionalities of cricket flour (CF) and the effects of the addition of CF on the texture and oxidative stability of hybrid sausages made from lean pork and CF. Functional properties of CF, including protein solubility, water-holding capacity, and gelling capacity, were examined at different pHs, NaCl concentrations, and CF contents in laboratory tests. The protein solubility of CF was significantly affected by pH, being at its lowest at pH 5 (within the range 2-10), and the highest protein solubility toward NaCl concentrations was found at 1.0 M (at pH 6.8). A gel was formed when the CF content was ≥10%. A control sausage was made from lean pork, pork fat, salt, phosphate, and ice water. Three different hybrid sausages were formulated by adding CF at 1%, 2.5%, and 5.0% levels on top of the base (control) recipe. In comparison to control sausage, the textural properties of the CF sausages in terms of hardness, springiness, cohesiveness, chewiness, resilience, and fracturability decreased significantly, which corresponded to the rheological results of the raw sausage batter when heated at a higher temperature range (~45-80 °C). The addition of CF to the base recipe accelerated both lipid and protein oxidation during 14 days of storage, as indicated by the changes in TBARS and carbonyls and the loss of free thiols and tryptophan fluorescence intensity. These results suggest that the addition of CF, even at low levels (≤5%), had negative effects on the texture and oxidative stability of the hybrid sausages.
Collapse
Affiliation(s)
- Xiaocui Han
- Department of Food and Nutrition, University of Helsinki, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | | | | | | |
Collapse
|
5
|
Dhal S, Anis A, Shaikh HM, Alhamidi A, Pal K. Effect of Mixing Time on Properties of Whole Wheat Flour-Based Cookie Doughs and Cookies. Foods 2023; 12:941. [PMID: 36900458 PMCID: PMC10001416 DOI: 10.3390/foods12050941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
This study investigated if whole wheat flour-based cookie dough's physical properties were affected by mixing time (1 to 10 min). The cookie dough quality was assessed using texture (spreadability and stress relaxation), moisture content, and impedance analysis. The distributed components were better organized in dough mixed for 3 min when compared with the other times. The segmentation analysis of the dough micrographs suggested that higher mixing time resulted in the formation of water agglomeration. The infrared spectrum of the samples was analyzed based on the water populations, amide I region, and starch crystallinity. The analysis of the amide I region (1700-1600 cm-1) suggested that β-turns and β-sheets were the dominating protein secondary structures in the dough matrix. Conversely, most samples' secondary structures (α-helices and random coil) were negligible or absent. MT3 dough exhibited the lowest impedance in the impedance tests. Test baking of the cookies from doughs mixed at different times was performed. There was no discernible change in appearance due to the change in the mixing time. Surface cracking was noticeable on all cookies, a trait often associated with cookies made with wheat flour that contributed to the impression of an uneven surface. There was not much variation in cookie size attributes. Cookies ranged in moisture content from 11 to 13.5%. MT5 (mixing time of 5 min) cookies demonstrated the strongest hydrogen bonding. Overall, it was observed that the cookies hardened as mixing time rose. The texture attributes of the MT5 cookies were more reproducible than the other cookie samples. In summary, it can be concluded that the whole wheat flour cookies prepared with a creaming time and mixing time of 5 min each resulted in good quality cookies. Therefore, this study evaluated the effect of mixing time on the physical and structural properties of the dough and, eventually, its impact on the baked product.
Collapse
Affiliation(s)
- Somali Dhal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Arfat Anis
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Hamid M Shaikh
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdullah Alhamidi
- SABIC Polymer Research Center (SPRC), Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| |
Collapse
|
6
|
Aleman RS, Marcía JA, Montero-Fernández I, King J, Pournaki SK, Hoskin RT, Moncada M. Novel Liquor-Based Hot Sauce: Physicochemical Attributes, Volatile Compounds, Sensory Evaluation, Consumer Perception, Emotions, and Purchase Intent. Foods 2023; 12:369. [PMID: 36673461 PMCID: PMC9857492 DOI: 10.3390/foods12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Hot sauces are popular peppery condiments used to add flavor and sensory excitement to gastronomical preparations. While hot sauce occupies a retail category well over a century old, a novel production method using liquor as the base preservative rather than traditional vinegar is now commercially available, and its uniqueness begs study. Hot sauces produced with tequila, rum, vodka, and bourbon were compared to traditional vinegar-based hot sauces concerning physicochemical properties, volatile compounds, microbiological quality, sensory scores, emotions, and purchase intent (PI). Under accelerated conditions, pH, titratable acidity (TA), water activity (Aw), viscosity, and color were analyzed weekly for 20 weeks, whereas rheological properties, coliforms and yeasts and molds were examined on weeks 1 and 20. Hexyl n-valerate, butanoic acid, 3-methyl-, hexyl ester, and 4-methylpentyl 3-methylbutanoate were found in high concentrations in the pepper mix as well as the hot sauce produced with vinegar. When compared to vinegar-based hot sauces, liquor-based hot sauces had similar Aw (p > 0.05), higher pH, viscosity, and L* values and lower TA, a*, and b* values (p < 0.05). Samples formulated with liquors increased the relaxation exponent derived from G’ values having a greater paste formation when compared to vinegar-based hot sauces. The sensory evaluation was carried out in Honduras. The liquor-based hot sauces had a significant (p < 0.05) impact on emotion and wellness terms. Bourbon and tequila samples had higher ratings than control samples in several wellness and emotion responses (active, energetic, enthusiastic, good, curious, pleased, stimulated, and wild). Adventurous, joyful, free, worried, refreshed, and healthy scores were not significantly (p > 0.05) different among treatments.
Collapse
Affiliation(s)
- Ricardo S. Aleman
- School of Nutrition and Food Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jhunior A. Marcía
- Faculty of Technological Sciences, Universidad Universidad Nacional de Agricultura, Catacamas 16201, Honduras
| | - Ismael Montero-Fernández
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, 06007 Badajoz, Spain
| | - Joan King
- School of Nutrition and Food Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Roberta Targino Hoskin
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| | - Marvin Moncada
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| |
Collapse
|