1
|
Zheng J, Xiong W, Yi J, Zhou L, Cai S. High internal phase Pickering emulsions co-loaded with astaxanthin and ferrous gluconate improve iron deficiency anemia in mice and their applications in 3D printing. Food Res Int 2024; 197:115242. [PMID: 39593324 DOI: 10.1016/j.foodres.2024.115242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Iron deficiency anemia (IDA) is a prevalent and serious nutritional health issue that can be mitigated through dietary iron supplementation. However, only ferrous ions, prone to oxidation, can be absorbed in the gastrointestinal tract. In the current work, the effects of high internal phase Pickering emulsions (HIPPEs) co-loaded with astaxanthin (ASTA) and ferrous gluconate on Fe2+ oxidation, IDA management, and their 3D printing performance were investigated. The results demonstrated that the HIPPEs co-loaded with ASTA and ferrous gluconate effectively reduced the oxidation rate of Fe2+ during storage. Animal studies also revealed that HIPPE co-loaded with ASTA and ferrous gluconate had a therapeutic effect on IDA symptoms in mice. HIPPE co-loaded with ASTA and 400 mg/L ferrous gluconate demonstrated superior efficacy in restoring hemoglobin (Hb) levels, organ coefficients, and histological parameters in mice with IDA. Moreover, the evaluation of the adaptability of HIPPEs co-loaded with ASTA and ferrous gluconate for food 3D printing indicated a slight reduction in printing resolution. Overall printing performance was found to be acceptable and satisfactory. Co-loading ASTA and ferrous gluconate in HIPPEs offers an efficient way to address the oxidation challenge of ferrous ion supplementation, enabling customization and flexibility in the production of iron-fortified foods to mitigate IDA.
Collapse
Affiliation(s)
- Jingyi Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Wenyun Xiong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, People's Republic of China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming, Yunnan Province 650500, People's Republic of China; International Green Food Processing Research and Development Center of Kunming City, Kunming, Yunnan Province 650500, People's Republic of China.
| |
Collapse
|
2
|
Jaber FA, Nasr S, Al-Sayed HMA, Al-Otaibi AM, Mohamed HS, Hamdy HM, Abdelnour SA, Fouad W. Effect of dietary supplementation of macadamia oil on the growth, immune function, physio-biochemical components and thyroid activity of growing rabbits. J Anim Physiol Anim Nutr (Berl) 2024; 108:1734-1746. [PMID: 38956882 DOI: 10.1111/jpn.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
The current research aimed to assess the effects of dietary macadamia oil (MO) on carcass traits, growth performance, physio-biochemical components, immune function, thyroid hormones and inflammation markers of growing rabbits. A total of 96 growing rabbits were randomly distributed into four treatments, with 24 rabbits in each group. The rabbits were fed a basal diet (control group) or a diet supplemented with MO at 0.5 (MO0.5), 1 (MO1.0) and 2 (MO2.0) mL/kg of diet for eight weeks. The daily body weight gain and feed conversion ratio showed a quadratic improvement with increasing levels of MO, and the optimal dose was 1.25 mL/kg of diet. Increasing levels of MO also had a quadratic effect on hepatic and renal functions. Dose-response curves revealed that the optimal doses of MO were 1.50, 1.75 and 1.25 mL/kg of diet for total bilirubin, gamma-glutamyl transferase, and creatinine respectively. A quadratic relationship was observed between the increased levels of MO and tumour necrosis factor-α (p = 0.038), interleukin-6 (p = 0.014) and immunoglobulins (p = 0.016 and IgM p = 0.026). Additionally, a linear relationship was observed between the increment in MO levels and both nitric oxide (p = 0.040) and interleukin-4 (p = 0.001). The activities of superoxide dismutase and glutathione peroxidase showed a linear increase with increasing dietary MO content, while xanthine oxidase showed a linear decrease. Total antioxidant capacity showed quadratic improvement (p = 0.035) with the dietary treatment, with the optimal dose observed at 1.25 mL/kg of diet. The inclusion of MO in the diet had a linear effect on the activity of thyroxine (p = 0.001). Therefore, supplementation of MO at a dose of 1 or 1.5 mL/kg of diet in growing rabbits' diets can improve growth and carcass traits, sustain thyroid function by supporting immunity, and reduce oxidative/inflammation pathways.
Collapse
Affiliation(s)
- Fatima A Jaber
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Samia Nasr
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Hanan M A Al-Sayed
- Department of Food Science and Nutrition, Faculty of Home Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Aljohara M Al-Otaibi
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hanan S Mohamed
- Agricultural Research Center, Animal Production Research Institute, Dokki, Egypt
| | - Haggag M Hamdy
- Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Helwan, Egypt
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Walid Fouad
- Poultry Production Department, Faculty of Agriculture, New Valley University, New Valley, Egypt
| |
Collapse
|
3
|
Zheng J, Ding L, Yi J, Zhou L, Zhao L, Cai S. Revealing the potential effects of oil phase on the stability and bioavailability of astaxanthin contained in Pickering emulsions: In vivo, in vitro and molecular dynamics simulation analysis. Food Chem 2024; 456:139935. [PMID: 38870805 DOI: 10.1016/j.foodchem.2024.139935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
This study investigated the effects of oil phases on the encapsulation rate, storage stability, and bioavailability of astaxanthin (ASTA) in Pickering emulsions (PEs). Results showed PEs of mixed oils (olive oil/edible tea oil) had excellent encapsulation efficiency (about 96.0%) and storage stability of ASTA. In vitro simulated gastrointestinal digestion results showed the mixed oil PE with a smaller interfacial area and higher monounsaturated fatty acid content may play a better role in improving ASTA retention and bioaccessibility. In vivo absorption results confirmed the mixed oil PE with an olive oil/edible tea oil of 7:3 was more favorable for ASTA absorption. Molecular dynamics simulation showed ASTA bound more strongly and stably to fatty acid molecules in the system of olive oil/edible tea oil of 7:3; and van der Waals force was the main binding force. NMR further proved there really were interactions between ASTA and four main fatty acids.
Collapse
Affiliation(s)
- Jingyi Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lixin Ding
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Linyan Zhou
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
4
|
Xu L, Xu Y, Hou S, Zheng X, Cao Q, Chang M, Feng C, Cheng Y, Geng X, Meng J. All-natural polysaccharide and protein complex nanoparticles from Clitocybe squamulosa as unique Pickering stabilizers for oil-in-water emulsions. Int J Biol Macromol 2024; 272:132674. [PMID: 38850815 DOI: 10.1016/j.ijbiomac.2024.132674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
This study aimed to develop novel nanoparticles that can serve as an excellent oil-in-water (O/W) Pickering stabilizer. The polysaccharide-protein complex nanoparticles (PPCNs-20 and PPCNs-40) were prepared at different ultrasonication amplitudes (20 % and 40 %, respectively) from the polysaccharide-protein complexes (PPCs) which were extracted from the residue of Clitocybe squamulose. Compared with PPCs and PPCNs-20, the PPCNs-40 exhibited dispersed blade and rod shape, smaller average size, and larger zeta potential, which indicated significant potential in O/W Pickering emulsion stabilizers. Subsequently, PPCNs-40 stabilized Pickering emulsions were characterized at different concentrations, pHs, and oil phase contents. The average size, micromorphology, rheological properties, and storage stability of the emulsions were improved as the concentration of PPCNs-40, the ratio of the soybean oil phase and pH value increased. Pickering emulsions showed the best stability when the concentration of PPCNs-40 was 3 wt%, and the soybean oil fraction was 30 % under both neutral and alkaline conditions. The emulsions demonstrated shear thinning and gelation behavior. These findings have implications for the use of eco-friendly nanoparticles as stabilizers for Pickering emulsions and provide strategies for increasing the added value of C. squamulosa.
Collapse
Affiliation(s)
- Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| | - Yaping Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shuting Hou
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaojiao Zheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qunluo Cao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Mingchang Chang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Engineering Research Center of Edible Fungi, Taigu, Shanxi 030801, China.
| |
Collapse
|
5
|
Cai J, Zhang D, Xie F. The role of alginate in starch nanocrystals-stabilized Pickering emulsions: From physical stability and microstructure to rheology behavior. Food Chem 2024; 431:137017. [PMID: 37562336 DOI: 10.1016/j.foodchem.2023.137017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/25/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
Sodium alginate (SA) was used as a co-stabilizer to improve the Pickering emulsions stabilized by starch nanocrystals (SNC). Compared with pure SNC, SNC/SA complexes possess better neutral wettability with the contact angle approaching to 90°, more surface negative charges, and lower oil-water interfacial tension. These properties of particles make as-prepared emulsion higher stability with the lower creaming index and average droplet size. Furthermore, the emulsion exhibited good stability against salt (0-600 mM) and pH (2.0-6.0) at higher SA concentration (1.0 wt%). Confocal laser scanning microscopy (CLSM) images proved that SNC could be effectively adsorbed at the oil-water interface with the aid of SA. Rheological analysis showed that higher content of SA resulted in improved strength and higher viscosity of emulsion system. Results from this work indicating that SA could be a useful co-stabilizer to fulfill the demands of Pickering emulsions stabilized by SNC with stable characteristics.
Collapse
Affiliation(s)
- Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Die Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Fang Xie
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
6
|
Cassava Starch Films Containing Quinoa Starch Nanocrystals: Physical and Surface Properties. Foods 2023; 12:foods12030576. [PMID: 36766104 PMCID: PMC9914035 DOI: 10.3390/foods12030576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Quinoa starch nanocrystals (QSNCs), obtained by acid hydrolysis, were used as a reinforcing filler in cassava starch films. The influence of QSNC concentrations (0, 2.5, 5.0, 7.5 and 10%, w/w) on the film's physical and surface properties was investigated. QSNCs exhibited conical and parallelepiped shapes. An increase of the QSNC concentration, from 0 to 5%, improved the film's tensile strength from 6.5 to 16.5 MPa, but at 7.5%, it decreased to 11.85 MPa. Adequate exfoliation of QSNCs in the starch matrix also decreased the water vapor permeability (~17%) up to a 5% concentration. At 5.0% and 7.5% concentrations, the films increased in roughness, water contact angle, and opacity, whereas the brightness decreased. Furthermore, at these concentrations, the film's hydrophilic nature changed (water contact angle values of >65°). The SNC addition increased the film opacity without causing major changes in color. Other film properties, such as thickness, moisture content and solubility, were not affected by the QSNC concentration. The DSC (differential scanning calorimetry) results indicated that greater QSNC concentrations increased the second glass transition temperature (related to the biopolymer-rich phase) and the melting enthalpy. However, the film's thermal stability was not altered by the QSNC addition. These findings contribute to overcoming the starch-based films' limitations through the development of nanocomposite materials for future food packaging applications.
Collapse
|