1
|
Huang J, Sun Z, Zhang G, Zhang Z, Sun F, Han D, Wang J, Zhao J. Ferulic acid mediates microbial fermentation of arabinoxylan to enhance host immunity by suppressing TLR4/NF-κB signaling. Int J Biol Macromol 2025; 298:139810. [PMID: 39814295 DOI: 10.1016/j.ijbiomac.2025.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The study was conducted to explore the relationship between arabinoxylan (AX) structure and microbial fermentation characteristics, and reveal molecular mechanism of AX on regulating immune function of the host. Results indicated that the group of wheat bran AX showed greater activity of feruloyl esterase, production of short chain fatty acids and ferulic acid compared with the blank group (P < 0.05). The AX increased sIgA concentration and protein expression of protein expression of TLR4 and NF-κB (p65), but decreased mRNA expression of pro-inflammatory cytokines in the ileum of weaned pig model, leading to the reduced diarrhea (P < 0.05). The AX increased an abundance of Bifidobacterium pseudocatenulatum, production of butyric acid and ferulic acid in the ileal digesta of pigs (P < 0.05). In a LPS-treated mouse model, butyric acid and ferulic acid combination increased IL-10 concentration and abundance of Bifidobacterium pseudocatenulatum, but reduced mRNA expression of IL-6 and gene expression of TLR4 and NF-κB (p65) in the jejunum. In summary, AX is fermented by gut microbiota to produce ferulic acid, as well as butyric acid, which improved host immunity by promoting relative abundance of Bifidobacterium pseudocatenulatum and suppressing activation of TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Jingyi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ge Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zeyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feize Sun
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Hussain M, Simsek S. Impact of Ferulated Arabinoxylans from Maize Bran on Farinograph and Pasting Properties of Wheat Flour Blends. Foods 2024; 13:3414. [PMID: 39517198 PMCID: PMC11545305 DOI: 10.3390/foods13213414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
This research explores the extraction of ferulated arabinoxylans (FAXs) from maize bran and their incorporation into wheat flour to assess their impact on rheological and pasting properties. Flour blends were prepared with FAX concentrations of 0%, 2%, 4%, 6%, 8%, and 10%, and these blends were then evaluated using farinograph, mixograph, micro-extensibility, and viscosity analyses. The results indicated that farinograph water absorption increased significantly (p ≤ 0.05), ranging from 54.9% to 60.5%, as the FAX content rose, correlating with higher gel-forming potential. Notably, the 2% FAX treatment (FAX2) exhibited the longest dough development time at 24.7 min. Stability and mixing time index (MTI) values also varied significantly (p ≤ 0.05) among treatments, with FAX2 displaying a longer mixing time of 14.4 ± 3.3 min. A pasting analysis revealed a significant decrease in peak and hot paste viscosity (p < 0.05) with increasing FAX concentrations, suggesting an association between lower hot paste viscosity and reduced breakdown. Micro-extensibility measures further indicated that blends with 0% and 2% FAX had greater extensibility, while the 4% FAX blend showed higher resistance. Overall, this research aims to advance the understanding of how these components can enhance flour functionality and contribute to the development of healthier, higher-quality baked products.
Collapse
Affiliation(s)
- Muzzamal Hussain
- Department of Food Science, Government College University, Faisalabad 38000, Punjab, Pakistan;
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Senay Simsek
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Zhang H, Zhang M, Zheng X, Xu X, Zheng J, Hu Y, Mei Y, Liu Y, Liang Y. Solid-State Fermentation of Wheat Bran with Clostridium butyricum: Impact on Microstructure, Nutrient Release, Antioxidant Capacity, and Alleviation of Ulcerative Colitis in Mice. Antioxidants (Basel) 2024; 13:1259. [PMID: 39456512 PMCID: PMC11504992 DOI: 10.3390/antiox13101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigated the effects of solid-state fermentation with Clostridium butyricum on the microstructure of wheat bran, the release of dietary fiber and phenolic compounds, and antioxidant capacity. Compared with unfermented wheat bran, insoluble dietary fiber and phytic acid content decreased, whereas soluble dietary fiber and water-extractable arabinoxylan content increased in C. butyricum culture. Because of the increased release of phenolic compounds, such as ferulic acid and apigenin, and organic acids, such as isobutyric acid, the antioxidant capacity of the culture was considerably improved. Furthermore, the culture of C. butyricum treated with dextran sulfate sodium-induced ulcerative colitis in mice enhanced the expression of intestinal mucus and tight-junction proteins, modulating the gut microbiota structure, increasing the levels of short-chain fatty acids in the intestine, and restoring the essential functions of the gut microbiota. These anti-inflammatory effects stemmed from the combined action of various effective components.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Min Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Xin Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Xiaofang Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Jiawen Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China;
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| | - Yangyang Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.Z.); (M.Z.); (X.Z.); (X.X.); (J.Z.); (Y.M.)
| |
Collapse
|
4
|
Kenawy ER, El-Moaty MSA, Ghoneum M, Soliman HMA, El-Shanshory AA, Shendy S. Biobran-loaded core/shell nanofibrous scaffold: a promising wound dressing candidate. RSC Adv 2024; 14:4930-4945. [PMID: 38327812 PMCID: PMC10848241 DOI: 10.1039/d3ra08609g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
This research examined the effectiveness of Biobran as a bioactive substance that could potentially improve wound healing. It also looked at how Biobran affects the properties of a nanofibrous scaffold made through coaxial electrospinning. This is the first study exploring the use of Biobran in this context and its interaction with nanofibrous scaffolds. The scaffolds were composed of poly(ε-caprolactone) (PCL) in the shell and various concentrations of Biobran blended with polyvinyl alcohol (PVA) in the core. The properties of the scaffolds were characterized by SEM, TEM, FTIR, XRD, TGA, DSC, stress-strain test, WCA, release test, MTT cytotoxicity assay, wound scratching assay, and the dye exclusion method using trypan blue. The scaffolds loaded with Biobran exhibited a more compact and smooth morphology compared with the scaffold without Biobran. The physical interaction and crystallinity of the polymers in the scaffolds were also affected by Biobran in a concentration-dependent manner. This positively influenced their tensile strength, elongation at break, thermal stability, and hydrophilicity. The porosity, water uptake capacity, and WVTR of the nanofibrous scaffolds are within the optimal ranges for wound healing. The release rate of Biobran, which revealed a biphasic release pattern, decreased with increasing Biobran concentration, resulting in controlled and sustained delivery of Biobran from the nanofiber scaffolds. The cell viability assays showed a dose-dependent effect of Biobran on WISH cells, which might be attributed to the positive effect of Biobran on the physicochemical properties of the nanofibrous scaffolds. These findings suggest that Biobran-loaded core/shell nanofiber scaffolds have a potential application in wound healing as an ideal multifunctional wound dressing.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mohammed S A El-Moaty
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science 1731 E. 120th Street Los Angeles CA 90059 USA
- Department of Surgery, University of California Los Angeles Los Angeles CA 90095 USA
| | - Hesham M A Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - Ahmed A El-Shanshory
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - S Shendy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| |
Collapse
|
5
|
Song Z, Xiong X, Huang G. Ultrasound-assisted extraction and characteristics of maize polysaccharides from different sites. ULTRASONICS SONOCHEMISTRY 2023; 95:106416. [PMID: 37094477 PMCID: PMC10160789 DOI: 10.1016/j.ultsonch.2023.106416] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Antitumor, antioxidant, hypoglycemic, and immunomodulatory properties are all exhibited by maize polysaccharides. With the increasing sophistication of maize polysaccharide extraction methods, enzymatic method is no longer limited to a single enzyme to extract polysaccharides, and is more often used in combination with ultrasound or microwave, or combination with different enzymes. Ultrasound has a good cell wall-breaking effect, making it easier to dislodge lignin and hemicellulose from the cellulose surface of the maize husk. The "water extraction and alcohol precipitation" method is the simplest but most resource- and time-consuming process. However, the "ultrasound-assisted extraction" and "microwave-assisted extraction" methods not only compensate for the shortcoming, but also increase the extraction rate. Herein, the preparation, structural analysis, and activities of maize polysaccharides were analyzed and discussed.
Collapse
Affiliation(s)
- Zongyan Song
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Xiong Xiong
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|