1
|
Machado AKQCB, Medeiros SGF, Bogo D, Maniçoba FAP, Santana LF, Santos KFDP, Vieira RS, Salomão EA, Palhares MA, Nascimento VA, Hiane PA, Freitas KC, Donadon JR, Bastos PRHO, Guimarães RCA. Halophytes: nutrients, bioactive compounds, chemical characterization and potential applications. BRAZ J BIOL 2025; 84:e287593. [PMID: 39968988 DOI: 10.1590/1519-6984.287593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 11/22/2024] [Indexed: 02/20/2025] Open
Abstract
Halophytes are plants adapted to saline soils found in a diversity of environments with varied climatic conditions and high salinity, developing different strategies to complete their life cycle. Their ecological, morphological, physiological and biochemical adaptations allow resistance to the abiotic stresses suffered and the formation of bioactive compounds that give these plants anti-inflammatory, antiparasitic, antimicrobial, antiviral and antioxidant potential properties. Therefore, this study aimed to compile its different biological activities, its nutritional compounds, potential applications for pharmaceutical and food industries, its biotechnological use. Halophytes have vast potential for pharmaceutical industries, as well as being a sustainable alternative in production of animal feed and a viable possibility for replacing the use of table salt and its various applications in human nutrition. It is necessary to invest in new and diversified research highlighted in this study.
Collapse
Affiliation(s)
- A K Q C B Machado
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - S G F Medeiros
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - D Bogo
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - F A P Maniçoba
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - L F Santana
- Universidade Estadual de Mato Grosso do Sul - UEMS, Dourados, MS, Brasil
| | - K F D P Santos
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - R S Vieira
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - E A Salomão
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - M A Palhares
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - V A Nascimento
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - P A Hiane
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - K C Freitas
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - J R Donadon
- Universidade Federal de Mato Grosso do Sul - UFMS, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Campo Grande, MS, Brasil
| | - P R H O Bastos
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| | - R C A Guimarães
- Universidade Federal de Mato Grosso do Sul - UFMS, Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Campo Grande, MS, Brasil
| |
Collapse
|
2
|
Achour O, Haffani YZ, Mbarek S, Hammami O, Feki M, Zemmel A, Picaud S, Boudhrioua N, Chaouacha-Chekir RB. Hydroxytyrosol-Rich Olive Mill Wastewater, a Potential Protector Against Dyslipidemia, Diabetes, and Diabetic Retinopathy in Psammomys obesus. Chem Biodivers 2025:e202401351. [PMID: 39746854 DOI: 10.1002/cbdv.202401351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
Olive mill wastewater (OMWW), a byproduct of olive oil extraction, constitutes a natural resource of phenolic compounds. Hydroxytyrosol (HT), the predominant compound, was reported to have antioxidant, anti-inflammatory, and neuroprotective effects. This research aims to evaluate the effect of OMWW bioproduct rich in HT on retinal glial function, glutamate metabolism, and synaptic transmission alterations mediated by hyperglycemia and dyslipidemia in high-calorie diet (HCD)-induced diabetic retinopathy (DR) in Psammomys obesus. Animals were divided into four groups. Two diabetic animal groups (D) received an HCD, one untreated (D) and another receiving HT-OMWW treatment (20 mg/kg body weight: bw) (D+); the two other groups were used as controls (C and C+). During 7 months, food and water intake, body weight, glycemia, hematocrit, and serum lipid parameters were assessed. At 3, 5, and advanced 7 months of DR, immunohistochemical studies were performed to identify key proteins implicated in the protection of DR. HT-OMWW has anti-obesity, hypoglycemic, and hypolipidemic effects. Its long-term administration attenuates retinal glial reactivity, microglia number, changes in glutamate homeostasis, and synaptic function in diabetic animals with retinopathy. These results suggest that HT-OMWW extract seems to have promising in vivo anti-diabetic, anti-dyslipidemic, and neuroprotective effects in P. obesus, a model of DR-like humans.
Collapse
Affiliation(s)
- Oumaima Achour
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| | - Yosr Z Haffani
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| | - Sihem Mbarek
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| | - Oumayma Hammami
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| | - Monssef Feki
- Laboratory of Clinical Biochemistry, Rabta Hospital, LR99ES11, Faculty of Medicine of Tunis, University of Tunis El Manar, La Rabta, Tunis, Tunisia
| | - Ayachi Zemmel
- Herbes de Tunisie, El Mansoura Kesra, Siliana, Tunisia
| | - Serge Picaud
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Nourhène Boudhrioua
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| | - Rafika Ben Chaouacha-Chekir
- Laboratory of Physiopathology, Food and Biomolecules (PAB) of the High Institute of Biotechnology, Sidi Thabet (ISBST), Univ Manouba (UMA), BiotechPole Sidi Thabet, Sidi Thabet, Tunisia
| |
Collapse
|
3
|
Sanmartin C, Taglieri I, Bianchi A, Parichanon P, Puccinelli M, Pardossi A, Venturi F. Effects of Temperature and Packaging Atmosphere on Shelf Life, Biochemical, and Sensory Attributes of Glasswort ( Salicornia europaea L.) Grown Hydroponically at Different Salinity Levels. Foods 2024; 13:3260. [PMID: 39456322 PMCID: PMC11507112 DOI: 10.3390/foods13203260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/04/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Halophytes, such as Salicornia species, are promising new foods and are consumed for their pleasant salty taste and nutritional value. Since Salicornia is perishable, modified atmospheric packaging (MAP) can be a useful tool, in combination with proper temperature, to halt further quality degradation in this type of product. The purpose of this study was to investigate the effect of MAP, with or without refrigeration, to extend the shelf life of glasswort (Salicornia europaea L.) grown hydroponically (floating raft system) in a greenhouse with a nutrient solution containing 0 g/L (C) or 12.5 g/L of NaCl (T). The dry matter content, weight loss, respiration rate, biochemical composition, color, antioxidant capacity, and sensorial attributes were determined in shoots after harvest and during storage in plastic bags filled with technical air or with MAP at 4 or 20 °C for 120 h. At harvest, plants supplied with salt-enriched solution (T) showed a significant improvement in nutritional value and sensory profile. Storage in air at room temperature (20 °C) accelerated weight loss and diminished color stability, particularly in non-salinity samples (C), while MAP extended the shelf life of all the samples regardless of the storage temperature adopted. Optimal storage conditions were observed when MAP was combined with refrigeration, which allowed to effectively preserve shoots sensory acceptability for a period of about seven days. Future research could further explore the long-term effects on the nutritional value and sensory quality of S. europaea under various combinations of MAP and different storage temperatures ranging between 4 °C and 20 °C.
Collapse
Affiliation(s)
- Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (P.P.); (M.P.); (A.P.); (F.V.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (P.P.); (M.P.); (A.P.); (F.V.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (P.P.); (M.P.); (A.P.); (F.V.)
| | - Prangthip Parichanon
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (P.P.); (M.P.); (A.P.); (F.V.)
| | - Martina Puccinelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (P.P.); (M.P.); (A.P.); (F.V.)
| | - Alberto Pardossi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (P.P.); (M.P.); (A.P.); (F.V.)
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (C.S.); (I.T.); (P.P.); (M.P.); (A.P.); (F.V.)
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
4
|
Louçano B, Maletti S, Timóteo H, Figueiredo JP, Osório N, Barroca MJ, da Silva AM, Pereira T, Caseiro A. Assessing Sarcocornia as a Salt Substitute: Effects on Lipid Profile and Gelatinase Activity. Nutrients 2024; 16:929. [PMID: 38612961 PMCID: PMC11013238 DOI: 10.3390/nu16070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.
Collapse
Affiliation(s)
- Beatriz Louçano
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
| | - Sara Maletti
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, Faculty of Medicine and Surgery, University of Modena and Reggio Emilia, Policlinico, via del Pozzo, 7141124 Modena, Italy;
| | - Helena Timóteo
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
| | - João Paulo Figueiredo
- Polytechnic Institute of Coimbra, Coimbra Health School, Medical Sciences, Socials and Humans, Rua 5 de Outubro, 3046-854 Coimbra, Portugal;
| | - Nádia Osório
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
| | - Maria João Barroca
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Agriculture School of Coimbra, Bencanta, 3040-360 Coimbra, Portugal
| | - Aida Moreira da Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Agriculture School of Coimbra, Bencanta, 3040-360 Coimbra, Portugal
| | - Telmo Pereira
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Polytechnic Institute of Coimbra, Coimbra Health School, Clinical Physiology, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal
- Faculty of Sport Science and Physical Education, University of Coimbra, CIDAF—Research Unit for Sport and Physical Activity, 3000-456 Coimbra, Portugal
| | - Armando Caseiro
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal; (B.L.); (H.T.); (N.O.); (A.C.)
- LABINSAÚDE-Research Laboratory for Applied Health Sciences, Polytechnic Institute of Coimbra, Coimbra Health School, Rua 5 de Outubro, S. Martinho do Bispo, 3046-854 Coimbra, Portugal;
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal;
- Faculty of Sport Science and Physical Education, University of Coimbra, CIDAF—Research Unit for Sport and Physical Activity, 3000-456 Coimbra, Portugal
| |
Collapse
|
5
|
Wang D, Lv J, Fu Y, Shang Y, Liu J, Lyu Y, Wei M, Yu X. Optimization of Microwave-Assisted Extraction Process of Total Flavonoids from Salicornia bigelovii Torr. and Its Hepatoprotective Effect on Alcoholic Liver Injury Mice. Foods 2024; 13:647. [PMID: 38472759 DOI: 10.3390/foods13050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The objective of this study was to determine the optimal extraction conditions for total flavonoids from S. bigelovii using microwave-assisted extraction and to analyze the protective effect of total flavonoids from S. bigelovii on alcoholic liver injury in mice. The optimization of the process conditions for the microwave-assisted extraction of total flavonoids from S. bigelovii was performed using response surface methodology, and an alcohol-induced acute liver injury model in mice was used to investigate the effects of different doses of total flavonoids (100 mg/kg, 200 mg/kg, and 400 mg/kg) on the levels and activities of serum alanine aminotransferase kits (ALT), glutamic oxaloacetic transaminase kits (AST), superoxide dismutase kits (SOD), glutathione peroxidase kits (GSH-Px), and malondialdehyde (MDA). We performed hematoxylin-eosin (H&E) staining analysis on pathological sections of mouse liver tissue, and qRT-PCR technology was used to detect the expression levels of the inflammatory factors IL-1 β, IL-6, and TNF-α. The results revealed that the optimal extraction process conditions for total flavonoids in S. bigelovii were a material-to-liquid ratio of 1:30 (g/mL), an ethanol concentration of 60%, an extraction temperature of 50 °C, an ultrasound power of 250 W, and a yield of 5.71 ± 0.28 mg/g. Previous studies have demonstrated that the flavonoids of S. bigelovii can significantly inhibit the levels of ALT and AST in the serum (p < 0.001), reduce MDA levels (p < 0.001), increase the activity of the antioxidant enzymes SOD and GSH-Px (p < 0.001), and inhibit the IL-1 β, IL-6, and TNF-α gene expression levels (p < 0.001) of inflammatory factors. The total flavonoids of S. bigelovii exert a protective effect against alcoholic liver injury by reducing the levels of inflammation, oxidative stress, and lipid peroxidation caused by alcohol. The results of this study lay the foundation for the high-value utilization of S. bigelovii and provide new resources for the development of liver-protective drugs.
Collapse
Affiliation(s)
- Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jing Lv
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yan Fu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yueling Shang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ming Wei
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
6
|
Fernandes AS, Ferreira-Pêgo C, Costa JG. Functional Foods for Health: The Antioxidant and Anti-Inflammatory Role of Fruits, Vegetables and Culinary Herbs. Foods 2023; 12:2742. [PMID: 37509834 PMCID: PMC10379050 DOI: 10.3390/foods12142742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The concept of "functional foods" converges topics such as diet, food, health, and disease [...].
Collapse
Affiliation(s)
- Ana S Fernandes
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Cíntia Ferreira-Pêgo
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - João G Costa
- CBIOS-Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| |
Collapse
|
7
|
Oliveira-Alves SC, Andrade F, Sousa J, Bento-Silva A, Duarte B, Caçador I, Salazar M, Mecha E, Serra AT, Bronze MR. Soilless Cultivated Halophyte Plants: Volatile, Nutritional, Phytochemical, and Biological Differences. Antioxidants (Basel) 2023; 12:1161. [PMID: 37371891 PMCID: PMC10295272 DOI: 10.3390/antiox12061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The use of halophyte plants appears as a potential solution for degraded soil, food safety, freshwater scarcity, and coastal area utilization. These plants have been considered an alternative crop soilless agriculture for sustainable use of natural resources. There are few studies carried out with cultivated halophytes using a soilless cultivation system (SCS) that report their nutraceutical value, as well as their benefits on human health. The objective of this study was to evaluate and correlate the nutritional composition, volatile profile, phytochemical content, and biological activities of seven halophyte species cultivated using a SCS (Disphyma crassifolium L., Crithmum maritimum L., Inula crithmoides L., Mesembryanthemum crystallinum L., Mesembryanthemum nodiflorum L., Salicornia ramosissima J. Woods, and Sarcocornia fruticosa (Mill.) A. J. Scott.). Among these species, results showed that S. fruticosa had a higher content in protein (4.44 g/100 g FW), ash (5.70 g/100 g FW), salt (2.80 g/100 g FW), chloride (4.84 g/100 g FW), minerals (Na, K, Fe, Mg, Mn, Zn, Cu), total phenolics (0.33 mg GAE/g FW), and antioxidant activity (8.17 µmol TEAC/g FW). Regarding the phenolic classes, S. fruticosa and M. nodiflorum were predominant in the flavonoids, while M. crystallinum, C. maritimum, and S. ramosissima were in the phenolic acids. Moreover, S. fruticosa, S. ramosissima, M. nodiflorum, M. crystallinum, and I. crithmoides showed ACE-inhibitory activity, an important target control for hypertension. Concerning the volatile profile, C. maritimum, I. crithmoides, and D. crassifolium were abundant in terpenes and esters, while M. nodiflorum, S. fruticosa, and M. crystallinum were richer in alcohols and aldehydes, and S. ramosissima was richer in aldehydes. Considering the environmental and sustainable roles of cultivated halophytes using a SCS, these results indicate that these species could be considered an alternative to conventional table salt, due to their added nutritional and phytochemical composition, with potential contribution for the antioxidant and anti-hypertensive effects.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - João Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - Andreia Bento-Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel Salazar
- Riafresh, Sítio do Besouro, CX 547-B, 8005-421 Faro, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Elsa Mecha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
8
|
Parailloux M, Godin S, Lobinski R. Nontargeted Screening for Flavonoids in Salicornia Plant by Reversed-Phase Liquid Chromatography–Electrospray Orbitrap Data-Dependent MS2/MS3. Molecules 2023; 28:molecules28073022. [PMID: 37049782 PMCID: PMC10096158 DOI: 10.3390/molecules28073022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
The Salicornia genus has great potential in agrifood industries because of its nutritional benefits related to its high content of antioxidant compounds, including flavonoids. A nontargeted method based on reversed-phase liquid chromatography–electrospray orbitrap data-dependent MS2/MS3 and the fragment ion search (FISh) strategy was developed to screen flavonoids in Salicornia plants. An extensive study of fragmentation of a set of flavonoid standards allowed for the definition of 15 characteristic fragment ions for flagging flavonoids in the plant matrix. The nontargeted analysis was applied to Salicornia europaea species and allowed for the annotation of 25 candidate flavonoids, including 14 that had not been reported previously. Structural prediction of two unreported flavonoids and their isomeric forms was based on an advanced data processing method using an in silico approach and in-house databases compiling flavonoid-specific chemical substitution. Finally, the method developed allowed for the optimization of extraction yields of flavonoids from the plant matrix.
Collapse
Affiliation(s)
- Maroussia Parailloux
- IPREM, UMR 5254, E2S UPPA, CNRS, Université de Pau et des Pays de l’Adour, 64000 Pau, France; (S.G.); (R.L.)
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France
- Correspondence:
| | - Simon Godin
- IPREM, UMR 5254, E2S UPPA, CNRS, Université de Pau et des Pays de l’Adour, 64000 Pau, France; (S.G.); (R.L.)
| | - Ryszard Lobinski
- IPREM, UMR 5254, E2S UPPA, CNRS, Université de Pau et des Pays de l’Adour, 64000 Pau, France; (S.G.); (R.L.)
- Chair of Analytical Chemistry, Department of Chemistry, Warsaw University of Technology, 00-664 Warszawa, Poland
| |
Collapse
|
9
|
Anti-Obesity and Anti-Dyslipidemic Effects of Salicornia arabica Decocted Extract in Tunisian Psammomys obesus Fed a High-Calorie Diet. Foods 2023; 12:foods12061185. [PMID: 36981112 PMCID: PMC10048570 DOI: 10.3390/foods12061185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Salicornia is a halophyte plant that has been used in traditional medicine for the treatment of scurvy, goiter, and hypertension. It is commercialized in Europe and Asia as fresh salads, pickled vegetables, green salt, or tea powder. This work is the first to assess the potential anti-obesity and anti-dyslipidemic effects of Salicornia arabica decocted extract (SADE). SADE was characterized by its significant in vitro radical scavenging activity (using DPPH and ABTS assays). The effect of SADE on food intake, weight loss, serum biochemical parameters, liver and kidney weights, adiposity index and on liver histology was investigated in the Tunisian gerbil Psammomys obesus (P. obesus), which is recognized as a relevant animal model of human obesity and diabetes. P. obesus animals were firstly randomly divided into two groups: the first received a natural low-calorie chow diet (LCD), and the second group received a high-calorie diet (HCD) over 12 weeks. On day 90, animals were divided into four groups receiving or not receiving SADE (LCD, LCD + SADE, HCD, and HCD + SADE). If compared to the HCD group, SADE oral administration (300 mg/kg per day during 4 weeks) in HCD + SADE group showed on day 120 a significant decrease in body weight (−34%), blood glucose (−47.85%), serum levels of total cholesterol (−54.92%), LDL cholesterol (−60%), triglycerides (−48.03%), and of the levels of hepatic enzymes: ASAT (−66.28%) and ALAT (−31.87%). Oral administration of SADE restored the relative liver weight and adiposity index and significantly limited HCD-induced hepatic injury in P. obesus. SADE seems to have promising in vivo anti-obesity and anti-dyslipidemic effects.
Collapse
|
10
|
Diet Supplementation with Polyphenol-Rich Salicornia ramosissima Extracts Protects against Tissue Damage in Experimental Models of Cerebral Ischemia. Nutrients 2022; 14:nu14235077. [PMID: 36501107 PMCID: PMC9735563 DOI: 10.3390/nu14235077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Strokes are the second most common cause of death worldwide and a leading cause of disability. Regular consumption of polyphenols has been shown to reduce the risk of suffering a cardiovascular event. For this reason, we have investigated the protective effect of Salicornia ramosissima, a seasonal halophyte that synthetizes high amounts of bioactive compounds, including polyphenols, in response to environmental stress. Aqueous, hydroalcoholic, and ethanolic extracts were prepared to investigate if dietary supplementation prior to ischemic challenge can prevent subsequent damage using two animal models. First, we screened the protective effect against hypoxia-reoxygenation in Drosophila melanogaster and observed that both ethanolic and hydroalcoholic extracts protected flies from the deleterious effects of hypoxia. Second, we confirmed the protective effect of S. ramosissima ethanolic extract against brain ischemia using the transient middle cerebral artery occlusion mice model. Four weeks of oral supplementation with the ethanolic extract before artery occlusion reduced infarct volume and lowered the plasma levels of the DNA peroxidant product 8-hydroxydeoxyguanosine. Phytochemical profiling of S. ramosissima ethanolic extract revealed 50 compounds. Thus, it represents a valuable source of bioactive compounds that show promising disease-modifying activities and could be further developed as an effective food supplement for the prevention or treatment of neurovascular disorders.
Collapse
|