1
|
Mubeen B, Aregbe AY, Ma Y. Lactic acid fermentation of a novel Sea buckthorn-monk fruit beverage: Phenolic profile, volatile compounds, and antidiabetic and antihypertensive potential. Food Res Int 2025; 207:116033. [PMID: 40086952 DOI: 10.1016/j.foodres.2025.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/26/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
Functional foods offer health benefits that extend beyond basic nutrition, addressing critical public health challenges such as diabetes and hypertension. This study developed a novel lactic acid bacteria (LAB)-fermented beverage integrating sea buckthorn and monk fruit, two bioactive-rich ingredients with complementary properties. Sea buckthorn provides a robust profile of antioxidants, while monk fruit's natural sweetness and low glycemic index make it an ideal ingredient for health-conscious consumers. Three LAB strains (Lactiplantibacillus plantarum (LP), Lacticaseibacillus paracasei (LPC), and Lactobacillus acidophilus (LA) were utilized individually and in combination to evaluate their impact on the beverage's bioactive and functional properties. Phenolic profiling (HPLC) revealed 13 phenolic compounds, with LPC fermentation achieving the highest total polyphenol content (232.50 ± 2.37a). Quinic acid and neochlorogenic acids were most abundant in all samples, with significantly elevated concentrations observed in fermented samples. Remarkably, LAB fermentation induced the formation of kaempferol, a phenolic compound with well-documented therapeutic properties, which was absent in the control. Volatile compound analysis (HS-SPME-GC-MS) and aroma profiling (E-nose) demonstrated that LP and LPC + LA fermentations enhanced key volatile compounds and improved sensory complexity, as corroborated by aroma profiling. The functional properties of the beverage were assessed through α-amylase, α-glucosidase, and angiotensin-converting enzyme (ACE) inhibitory assays. LP and LP + LPC demonstrated superior antidiabetic and antihypertensive potential. A Mantel test confirmed strong correlations between phenolic profiles and bioactivities, substantiating the role of LAB fermentation in enhancing therapeutic potential.
Collapse
Affiliation(s)
- Bismillah Mubeen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Afusat Yinka Aregbe
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Wang J, Zhang Y, Zhang B, Han Y, Li J, Zhang B, Jiang Y. Optimization of the quality of sea buckthorn juice by enzymatic digestion and inoculation sequence. Food Chem 2025; 470:142623. [PMID: 39736178 DOI: 10.1016/j.foodchem.2024.142623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Sea buckthorn, rich in nutrients and bioactive compounds such as phenolics, fatty acids, and vitamins, presents processing challenges due to its intense sourness and bland flavor. This study addresses key challenges in flavor enhancement and sourness reduction by evaluating the effects of pectinase treatment and inoculation sequences on the overall quality. Optimal malic acid degradation and antioxidant occurred when Schizosaccharomyces pombe (S. pombe) was inoculated after pectinase digestion of the pulp, while sequential inoculation with Saccharomyces cerevisiae and S. pombe produced the most favorable flavor profile. S. pombe effectively promoted the degradation of malic and quinic acids during fermentation, improving color, antioxidant activity, and flavor characteristics. These findings highlight the critical role of pectinase digestion and inoculation sequence, offering practical guidance for optimizing large-scale fermentation processes and strain selection to develop innovative sea buckthorn beverages and enhance their market potential.
Collapse
Affiliation(s)
- Jianfeng Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yu Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bin Zhang
- International Sea buckthorn Association, Beijing 100038, China
| | - Yuqi Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jixin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yumei Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
3
|
Han Z, Shi S, Yao B, Shinali TS, Shang N, Wang R. Recent Insights in
Lactobacillus
-Fermented Fruit and Vegetable Juice: Compositional Analysis, Quality Evaluation, and Functional Properties. FOOD REVIEWS INTERNATIONAL 2025:1-35. [DOI: 10.1080/87559129.2025.2454284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Affiliation(s)
- Zixin Han
- China Agricultural University
- China Agricultural University
| | | | | | | | - Nan Shang
- China Agricultural University
- China Agricultural University
| | | |
Collapse
|
4
|
Chen H, Chen X, Li X, Lin X, Yue L, Liu C, Li Y. Growth and physiological response of Yulu Hippophae rhamnoides to drought stress and its omics analysis. PLANT SIGNALING & BEHAVIOR 2024; 19:2439256. [PMID: 39653502 PMCID: PMC11633206 DOI: 10.1080/15592324.2024.2439256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Hippophae rhamnoides (H. rhamnoides) is the primary tree species known for its ecological and economic benefits in arid and semi-arid regions. Understanding the response of H. rhamnoides roots to drought stress is essential for promoting the development of varieties. One-year-old Yulu H. rhamnoides was utilized as the experimental material, and three water gradients were established: control (CK), moderate (T1) and severe (T2), over a period of 120 days. The phenotypic traits and physiological indies were assessed and analyzed, while the roots were subjected by RNA-Seq transcriptome and Tandem Mass Tags (TMT) proteome analysis. Drought stress significantly reduced the plant height, ground diameter, root biomass and superoxide dismutase activity; however, the main root length increased. In comparison with CK, a total of 5789 and 5594 differential genes, as well as 63 and 1012 differential proteins, were identified in T1 and T2, respectively. The combined analysis of transcriptome and proteome showed that the number of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) associated with T1, T2 and CK was 28 and 126, respectively, with 7 and 36 genes achieving effective KEGG annotation. In T1 and T2, the differential genes were significantly enriched in the plant hormone signal transduction pathway, but there was no significant enrichment in the protein expression profile. In T2, 38 plant hormone signal transduction function genes and 10 peroxisome related genes were identified. With the increase of drought stress, the combined expression of DEGs and DEPs increased. Yulu H. rhamnoides may allocate more resources toward CAT while simultaneously decreasing SOD and POD to mitigate the oxidative stress induced by drought. Furthermore, the molecular mechanisms underlying plant hormone signal transduction and peroxisome-related genes in the roots of H. rhamnoides were discussed in greater detail.
Collapse
Affiliation(s)
- Haipeng Chen
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaolin Chen
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaogang Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Xin Lin
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Lihua Yue
- Technical Center, Chengde Astronaut Mountainous Plant Technology Co. Ltd. Chengde, Hebei, China
| | - Chunhai Liu
- Technical Center, Chengde Astronaut Mountainous Plant Technology Co. Ltd. Chengde, Hebei, China
| | - Yuling Li
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
5
|
Chen H, Zhao H, Jiang G, Chen J, Yi J, Zhou C, Luo D. The flavour of wheat gluten hydrolysate after Corynebacterium Glutamicum fermentation: Effect of degrees of hydrolysis and fermentation time. Food Chem 2024; 458:140238. [PMID: 38968705 DOI: 10.1016/j.foodchem.2024.140238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/12/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Corynebacterium glutamicum was used to ferment wheat gluten hydrolysates (WGHs) to prepare flavour base. This study investigated the effect of hydrolysis degrees (DHs) and fermentation time on flavour of WGHs. During fermentation, the contents of amino nitrogen, total acid and small peptides increased, while the protein and pH value decreased. Succinic acid, GMP, and Glu were the prominent umami substances in fermented WGHs. The aromas of WGHs with different DHs could be distinguished by electronic nose and GC-IMS. Based on OAV of GC-MS, hexanal was the main compound in WGHs, while phenylethyl alcohol and acetoin were dominant after fermentation. WGHs with high DHs accumulated more flavour metabolites. Correlation analysis showed that small peptides (<1 kDa) could promote the formation of flavour substances, and Asp was potentially relevant flavour precursor. This study indicated that fermented WGHs with different DHs can potentially be used in different food applications based on flavour profiles.
Collapse
Affiliation(s)
- Haowen Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Huiyan Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Guili Jiang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Jin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Jiawen Yi
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China.
| | - Donghui Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Hanjiang Laboratory), Chaozhou 521000, China; Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China.
| |
Collapse
|
6
|
Xiang Y, Zou M, Ou F, Zhu L, Xu Y, Zhou Q, Lei C. A Comparison of the Impacts of Different Drying Methods on the Volatile Organic Compounds in Ginseng. Molecules 2024; 29:5235. [PMID: 39598624 PMCID: PMC11596846 DOI: 10.3390/molecules29225235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Ginseng (Panax ginseng C. A. Meyer) is a valuable plant resource which has been used for centuries as both food and traditional Chinese medicine. It is popular in health research and markets globally. Fresh ginseng has a high moisture content and is prone to mold and rot, reducing its nutritional value without proper preservation. Drying treatments are effective for maintaining the beneficial properties of ginseng post-harvest. In this study, we investigated the effects of natural air drying (ND), hot-air drying (HAD), vacuum drying (VD), microwave vacuum drying (MVD), and vacuum freeze drying (VFD) on volatile organic compounds (VOCs) in ginseng. The results showed that the MVD time was the shortest, followed by the VFD, VD, and HAD times, whereas the ND time was the longest, but the VFD is the most beneficial to the appearance and color retention of ginseng. A total of 72 VOCs were obtained and 68 VOCs were identified using the five drying methods based on gas chromatography-ion mobility spectrometry (GC-IMS) technology, including 23 aldehydes, 19 alkenes, 10 alcohols, 10 ketones, 4 esters, 1 furan, and 1 pyrazine, and the ND method was the best for retaining VOCs. GC-IMS fingerprints, principal component analysis (PCA), Euclidean distance analysis, partial least squares discriminant analysis (PLS-DA), and cluster analysis (CA) can distinguish ginseng from different drying methods. A total of 29 VOCs can be used as the main characteristic markers of different drying methods in ginseng. Overall, our findings provide scientific theoretical guidance for optimizing ginseng's drying methods, aromatic health effects, and flavor quality research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chang Lei
- State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.X.); (M.Z.); (F.O.); (L.Z.); (Y.X.); (Q.Z.)
| |
Collapse
|
7
|
Hsu FL, Chen YJ, Hsu CK, Wang LJ. Characterization of Seven Species of Camellia Oil: Oil Content, Volatile Compounds, and Oxidative Stability. Foods 2024; 13:2610. [PMID: 39200538 PMCID: PMC11353628 DOI: 10.3390/foods13162610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/02/2024] Open
Abstract
In this study, we conducted tests on the seeds from four Taiwanese native Camellia species (C. japonica, C. furfuracea, C. laufoshanensis, and C. formosensis) and three commercialized species (C. oleifera, C. brevistyla, and C. sinensis) for comparison. We examined various aspects of these species, such as seed oil content, suitability for mechanical pressing, volatile components (edible flavor), and oil stability (suitability for cooking), to assess the feasibility of using these four native Taiwanese Camellia seeds as sources of edible oil. The results from solvent extraction tests and mechanical pressing experiments confirm that the seeds from C. furfuracea, C. japonica, and C. laufoshanensis have high oil contents, and their oils are suitable for extraction via the popular mechanical pressing method, with oil yields comparable to or higher than those of the commercialized Camellia species. The volatile components of the oils were collected using MonoTrap adsorbents and analyzed with a thermal desorption system coupled with gas chromatography-mass spectrometry (ATD-GC/MS), primarily consisting of alcohols, ketones, and aldehydes. The results of oxidative stability tests reveal that the seed oils from C. japonica, C. furfuracea, and C. laufoshanensis are higher than or equally stable to those from the commercialized Camellia species. After six months of storage, the stability of these three Camellia seed oils remained relatively high, demonstrating that the seed oils from C. japonica, C. furfuracea, and C. laufoshanensis can withstand high temperatures and can be easily preserved for future applications.
Collapse
Affiliation(s)
- Fu-Lan Hsu
- Forest Products Utilization Division, Taiwan Forestry Research Institute, Taipei 100051, Taiwan; (F.-L.H.); (Y.-J.C.)
| | - Ying-Ju Chen
- Forest Products Utilization Division, Taiwan Forestry Research Institute, Taipei 100051, Taiwan; (F.-L.H.); (Y.-J.C.)
| | - Chun-Kai Hsu
- Lienhuachih Research Center, Taiwan Forestry Research Institute, Nantou 555002, Taiwan;
| | - Liang-Jong Wang
- Forest Protection Division, Taiwan Forestry Research Institute, Taipei 100051, Taiwan
| |
Collapse
|
8
|
Yuan X, Wang T, Sun L, Qiao Z, Pan H, Zhong Y, Zhuang Y. Recent advances of fermented fruits: A review on strains, fermentation strategies, and functional activities. Food Chem X 2024; 22:101482. [PMID: 38817978 PMCID: PMC11137363 DOI: 10.1016/j.fochx.2024.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
Fruits are recognized as healthy foods with abundant nutritional content. However, due to their high content of sugar and water, they are easily contaminated by microorganisms leading to spoilage. Probiotic fermentation is an effective method to prevent fruit spoilage. In addition, during fermentation, the probiotics can react with the nutrients in fruits to produce new derived compounds, giving the fruit specific flavor, enhanced color, active ingredients, and nutritional values. Noteworthy, the choice of fermentation strains and strategies has a significant impact on the quality of fermented fruits. Thus, this review provides comprehensive information on the fermentation strains (especially yeast, lactic acid bacteria, and acetic acid bacteria), fermentation strategies (natural or inoculation fermentation, mono- or mixed-strain inoculation fermentation, and liquid- or solid-state fermentation), and the effect of fermentation on the shelf life, flavor, color, functional components, and physiological activities of fruits. This review will provide a theoretical guidance for the production of fermented fruits.
Collapse
Affiliation(s)
- Xinyu Yuan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, Henan Province 463000, China
| | - Hongyu Pan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yujie Zhong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
9
|
Ning B, Zuo Y, Wang L, Zhu L, Ren H, Wang S, Zeng W, Lu H, Zhang T. The potential correlation between the succession of microflora and volatile flavor compounds during the production of Zhenba bacon. Food Chem X 2024; 22:101478. [PMID: 38813459 PMCID: PMC11134563 DOI: 10.1016/j.fochx.2024.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Microbial composition plays an important role in the quality and flavor of bacon. The aims of this study were to detect bacterial community succession using high-throughput sequencing (HTS) and volatile flavor compound changes using gas chromatography-ion mobility spectrometry (GC-IMS) during the production of Zhenba bacon. The results showed that a total of 70 volatile compounds were detected. Among them, ketones, hydrocarbons, aldehydes, esters and alcohols were the main substances in the curing and smoking stages. In addition, the fungal abundance was greater than the bacterial abundance, and there was obvious succession of the microbial community with changes in fermentation time and processing technology. The main functional bacterial genera in the curing and smoking stages were Staphylococcus, Psychrobacter and Latilactobacillus, and the main fungal genera were Fusarium and Debaryomyces. Through correlation analysis, we found that pyrrole, 2-pentanol, methyl isobutyl ketone (MIBK) and ethyl acetate (EA) were significantly correlated with Staphylococcus, Psychrobacter, Pseudomonas and Myroides (p < 0.01), and it is speculated that they contribute significantly to flavor formation. The results of this study are helpful for understanding the microbial dynamics and characteristic volatile flavor compounds in Zhenba bacon, and provide new insights into the relationship between microorganisms and flavor through potential correlations.
Collapse
Affiliation(s)
- Bo Ning
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
| | - Yao Zuo
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, 723001, Shaanxi, China
| | - Lianxu Zhu
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China
| | - Hongqiang Ren
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China
| | - Shanshan Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, 723001, Shaanxi, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, 723001, Shaanxi, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, 723001, Shaanxi, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, 723001 Hanzhong, China
- Shaanxi University Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, 723001 Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, 723001 Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, 723001, Shaanxi, China
| |
Collapse
|
10
|
Zhang Z, Chen Y, Cheng Y, Gao Z, Qu K, Chen Z, Yue L, Guan W. Effects of Pulsed Electric Field and High-Pressure Processing Treatments on the Juice Yield and Quality of Sea Buckthorn. Foods 2024; 13:1829. [PMID: 38928771 PMCID: PMC11202788 DOI: 10.3390/foods13121829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Sea buckthorn juice has high nutritional value and a rich flavor that consumers enjoy. Traditional sea buckthorn thermal processing (TP) technology has problems such as low juice yield, poor quality, and poor flavor. Sea buckthorn berries are processed using a technique combining pulsed electric field (PEF) and high-pressure processing (HPP) to increase juice yield and study its impact on the quality and volatile aroma of sea buckthorn juice. Results have show that, compared with TP, under the condition of PEF-HPP, the juice yield of sea buckthorn significantly increased by 11.37% (p > 0.05); TP and PEF-HPP treatments could effectively kill microorganisms in sea buckthorn juice, but the quality of sea buckthorn juice decreased significantly after TP treatment (p > 0.05), whereas PEF-HPP coupling technology could maximally retain the nutrients of sea buckthorn juice while inhibiting enzymatic browning to improve color, viscosity, and particle size. The flavor of sea buckthorn juice is analyzed using electronic nose (E-nose) and gas chromatography-ion mobility spectrometer (GC-IMS) techniques, and it has been shown that PEF-HPP retains more characteristic volatile organic compounds (VOCs) of sea buckthorn while avoiding the acrid and pungent flavors produced by TP, such as benzaldehyde, (E)-2-heptenal, and pentanoic acid, among others, which improves the sensory quality of sea buckthorn juice. PEF-HPP technology is environmentally friendly and efficient, with significant economic benefits. Research data provide information and a theoretical basis for the sea buckthorn juice processing industry.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.Z.); (Y.C.); (Y.C.)
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| | - Yixuan Chen
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.Z.); (Y.C.); (Y.C.)
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| | - Yuying Cheng
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.Z.); (Y.C.); (Y.C.)
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| | - Zhenhong Gao
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| | - Kunsheng Qu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| | - Zhixi Chen
- Huachi Gannong Biotechnology Company Limited, Qingyang 745600, China;
| | - Lihua Yue
- Chengde Astronaut Mountainous Plant Technology Company Limited, Chengde 068450, China;
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.Z.); (Y.C.); (Y.C.)
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; (Z.G.); (K.Q.)
| |
Collapse
|
11
|
Saud S, Xiaojuan T, Fahad S. The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices. Food Chem X 2024; 21:101209. [PMID: 38384684 PMCID: PMC10878862 DOI: 10.1016/j.fochx.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Fermentation of fruit and vegetable juices with probiotics is a novel nutritional approach with potential health benefits. Lactic acid fermentation-based biotransformation results in changes in the profile and nature of bioactive compounds and improves the organoleptic properties, shelf life and bioavailability of vitamins and minerals in the fermented juices. This process has been shown to enrich the phenolic profile and bioactivity components of the juices, resulting in a new type of functional food with improved health benefits. Fruits and vegetables are the ideal substrate for microbial growth, and fruit and vegetable juice will produce rich nutrients and a variety of functional activities after fermentation, so that the high-quality utilization of fruits and vegetables is realized, and the future fermented fruit and vegetable juice products have a wide application market. This paper explores the typical fermentation methods for fruit and vegetable juices, investigates the bioactive components, functional activities, and the influence of fermentation on enhancing the quality of fruit and vegetable juices. The insights derived from this study carry significant implications for guiding the development of fermented fruit and vegetable juice industry.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Tang Xiaojuan
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
12
|
Peng B, Li J, Shan C, Cai W, Zhang Q, Zhao X, Li S, Wen J, Jiang L, Yang X, Tang F. Exploring metabolic dynamics during the fermentation of sea buckthorn beverage: comparative analysis of volatile aroma compounds and non-volatile metabolites using GC-MS and UHPLC-MS. Front Nutr 2023; 10:1268633. [PMID: 37743927 PMCID: PMC10512423 DOI: 10.3389/fnut.2023.1268633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Sea buckthorn has a high nutritional value, but its sour taste and foul odor make it unpalatable for consumers. In this study, we analyzed the metabolite changes occurring during the yeast-assisted fermentation of sea buckthorn juice using the HeadSpace Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) and Ultra-High Performance Liquid Chromatography-Mass Spectrometry (UHPLC-MS) techniques. A total of 86 volatile aroma compounds were identified during the fermentation process. The content of total volatiles in sea buckthorn juice increased by 3469.16 μg/L after 18 h of fermentation, with 22 compounds showing elevated levels. Notably, the total content of esters with fruity, floral, and sweet aromas increased by 1957.09 μg/L. We identified 379 non-volatile metabolites and observed significant increases in the relative abundance of key active ingredients during fermentation: glycerophosphorylcholine (increased by 1.54), glutathione (increased by 1.49), L-glutamic acid (increased by 2.46), and vanillin (increased by 0.19). KEGG pathway analysis revealed that amino acid metabolism and lipid metabolism were the primary metabolic pathways involved during fermentation by Saccharomyces cerevisiae. Fermentation has been shown to improve the flavor of sea buckthorn juice and increase the relative content of bioactive compounds. This study provides novel insights into the metabolic dynamics of sea buckthorn juice following yeast fermentation through metabolomics analysis. These findings could serve as a theoretical foundation for further studies on the factors influencing differences in yeast fermentation.
Collapse
Affiliation(s)
- Bo Peng
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Jingjing Li
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Chunhui Shan
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Wenchao Cai
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Qin Zhang
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Xinxin Zhao
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Shi Li
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Jing Wen
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Lin Jiang
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| | - Xinquan Yang
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
13
|
Wang M, Li X, Ding H, Chen H, Liu Y, Wang F, Chen L. Comparison of the volatile organic compounds in Citrus reticulata 'Chachi' peel with different drying methods using E-nose, GC-IMS and HS-SPME-GC-MS. FRONTIERS IN PLANT SCIENCE 2023; 14:1169321. [PMID: 37265640 PMCID: PMC10231685 DOI: 10.3389/fpls.2023.1169321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Introduction Citrus reticulata 'Chachi' peel (CRCP), which is named "Guangchenpi" in China, is a geographical indication product with unique flavor properties. CRCP has been used for centuries as a traditional genuine herb because of its excellent therapeutic effects. In addition, owing to its unique odor and high nutrition, it is widely used in various food preparations. Volatile organic compounds (VOCs) are regarded as an important quality marker for CRCP and are highly susceptible to effects in the drying process due to their thermal instability. Methods In the current study, the main VOCs in CRCP were processed using different drying methods, including sun-drying, hot air drying, and vacuum-freeze drying. The VOCs were identified by the electronic nose (E-nose), gas chromatography-ion mobility spectrometry (GC-IMS), and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Results The results showed that the CRCP dried by vacuum-freeze exhibited the highest VOCs contents and retained the richest compounds compared to those dried by other methods, which indicated that vacuum-freeze drying is the most suitable for CRCP production. Furthermore, the chemometrics analysis revealed that the primary differential metabolites of the samples generated using different drying methods were terpenes and esters. Discussion Overall, our study would help better understand the VOCs present in CRCP with different drying methods. The outcomes of the current study would guide the drying and processing of CRCP, which is beneficial for large-scale storage and industrial production of CRCP.
Collapse
Affiliation(s)
| | | | | | | | | | - Fu Wang
- *Correspondence: Fu Wang, ; Lin Chen,
| | - Lin Chen
- *Correspondence: Fu Wang, ; Lin Chen,
| |
Collapse
|
14
|
Lan T, Wang J, Bao S, Zhao Q, Sun X, Fang Y, Ma T, Liu S. Effects and impacts of technical processing units on the nutrients and functional components of fruit and vegetable juice. Food Res Int 2023; 168:112784. [PMID: 37120231 DOI: 10.1016/j.foodres.2023.112784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Fruit and vegetable juice (FVJ) has become a favorite beverage for all age groups because of its excellent sensory and nutritional qualities. FVJ has a series of health benefits such as antioxidant, anti-obesity, anti-inflammatory, anti-microbial and anti-cancer. Except for raw materials selection, processing technology and packaging and storage also play a vital role in the nutrition and functional components of FVJ. This review systematically reviews the important research results on the relationship between FVJ processing and its nutrition and function in the past 10 years. Based on the brief elucidation of the nutrition and health benefits of FVJ and the unit operation involved in the production process, the influence of a series of key technology units, including pretreatment, clarification, homogenization, concentration, sterilization, drying, fermentation and packaging and storage, on the nutritional function of FVJ was systematically expounded. This contribution provides an update on the impacts of technical processing units on the nutrients and functional components of FVJ and new perspectives for future studies.
Collapse
|