1
|
Luangsakul N, Van Ngo T. Sustainable techniques to enhance novel techno-functional properties and modulate starch digestibility of polyphenol-rich red rice flours with varying amylose content. Food Chem 2025; 480:143915. [PMID: 40120300 DOI: 10.1016/j.foodchem.2025.143915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/02/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Red rice flours performed modification using sustainable techniques, including ANN (annealing), HMT (heat moisture treatment), US (ultrasound), Pregel (Pregelatinization), WM (wet-microwave treatment), and DM (dry-microwave treatment). Manpo rice flour, which is high in amylose, demonstrated higher peak viscosity compared to flours from medium-high amylose rice (Hommali rice), under the same treatment conditions. The reduction in swelling power observed after ANN and HMT treatment in both varieties corresponds with the pasting behaviors of these flours. All samples exhibited notable shear-thinning properties. Pregel samples exhibited rapid digestion, with the maximum RDS levels reaching 35.4 % for Manpo rice and 37.3 % for Hommali rice. While, the structure of US samples changed, resulting in enhanced polyphenol bioaccessibility and decreased digestion rate. The lowest eGI recorded in US samples was 60.7 for Manpo rice and 61.5 for Hommali rice, with polyphenol bioaccessibility at 180 min measured at 37 % and 28.8 %, respectively. This study documents the impact of sustainable practices on the properties of red rice flours, thereby enhancing its culinary applications for future commercialization.
Collapse
Affiliation(s)
- Naphatrapi Luangsakul
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| | - Tai Van Ngo
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| |
Collapse
|
2
|
Ramashia SE, Ntsanwisi MD, Onipe OO, Mashau ME, Olamiti G. Nutritional, Functional, and Microbial Quality of Wheat Biscuits Enriched With Malted Pearl Millet and Orange Peel Flours. Food Sci Nutr 2024; 12:10477-10493. [PMID: 39723037 PMCID: PMC11666971 DOI: 10.1002/fsn3.4562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 12/28/2024] Open
Abstract
In this study, composite biscuits were produced by combining wheat flour (WF) with different proportions of malted pearl millet (MPM) flour (8%, 16%, 24%, and 32%) and orange peel (OP) flour (2%, 4%, 6%, and 8%), using 100% WF as a control. The investigation covered the functional properties, viscosity, and thermal properties of the flours, along with the proximate composition, antioxidant, physical properties, color attributes, and microbial quality of the composite biscuits. As MPM and OP flour (OPF) contents increased, water absorption capacity, dispersibility, and foaming power increased, while the viscosities of both hot and cold pastes decreased. The thermal properties of the composite flours, including onset, peak, and final temperatures (ranging between 74.19°C and 100.76°C), showed an upward trend with increasing proportions of MPM and orange peel flour (OPF). There was an increase in moisture content (3.43%-4.93%), ash (4.50%-5.59%), crude protein (11.70%-13.41%), and crude fiber (11.44%-16.24%) of biscuits with the incorporation of MPM and OPF. Similarly, the diameter (4.12-4.60 mm), thickness (9.00-10.00 mm), and hardness (7.53-8.75 N) of the biscuits were increased. Antioxidant properties were evident, with an increased total phenolic content (1.40-3.56 mg GAE/100 g), total flavonoid content (2.91-6.79 mg QUE/100 g), vitamin C (0.79-1.01 mg/g), and ferric reducing antioxidant power (1.78-8.64 mg GAE/g). Conversely, color attributes-L* (31.90), a* (10.82), b* (19.59), hue angle (30.42), and chroma (53.66)-were found to decrease with higher levels of MPM and OPF. Microbial quality showed decreased total counts, coliforms, yeasts, and mold in biscuits containing MPM and OPF. Overall, the inclusion of MPM and OPF enhanced the nutritional quality of the biscuits and could reduce reliance on imported wheat.
Collapse
Affiliation(s)
- Shonisani Eugenia Ramashia
- Department of Food Science and Technology, Faculty of Science, Engineering, and AgricultureUniversity of VendaThohoyandouSouth Africa
| | - Matimu Delicate Ntsanwisi
- Department of Food Science and Technology, Faculty of Science, Engineering, and AgricultureUniversity of VendaThohoyandouSouth Africa
| | - Oluwatoyin Oladayo Onipe
- Department of Food Science and Technology, Faculty of Science, Engineering, and AgricultureUniversity of VendaThohoyandouSouth Africa
| | - Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering, and AgricultureUniversity of VendaThohoyandouSouth Africa
| | - Gbeminiyi Olamiti
- Department of Food Science and Technology, Faculty of Science, Engineering, and AgricultureUniversity of VendaThohoyandouSouth Africa
| |
Collapse
|
3
|
Wu Y, Liu Y, Jia Y, Feng C, Zhang H, Ren F. Strategic exploration of whole grain cereals in modulating the glycaemic response. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38976377 DOI: 10.1080/10408398.2024.2374055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In the current context, diabetes presents itself as a widespread and complex global health issue. This study explores the significant influence of food microstructure and food matrix components interaction (protein, lipid, polyphenols, etc.) on the starch digestibility and the glycaemic response of post-prandial glycemia, focusing on the potential effectiveness of incorporating bioactive components from whole grain cereals into dietary strategies for the management and potential prevention of diabetes. This study aims to integrate the regulation of postprandial glycaemic homeostasis, including the complexities of starch digestion, the significant potential of bioactive whole grain components and the impact of food processing, to develop a comprehensive framework that combines these elements into a strategic approach to diabetes nutrition. The convergence of these nutritional strategies is analyzed in the context of various prevalent dietary patterns, with the objective of creating an accessible approach to mitigate and prevent diabetes. The objective remains to coalesce these nutritional paradigms into a coherent strategy that not only addresses the current public health crisis but also threads a preventative approach to mitigate future prevalence and impact.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Chaohui Feng
- School of Regional Innovation and Social Design Engineering, Faculty of Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
4
|
Xie Q, Wu S, Lai S, Ye F. Effects of Stir-Frying and Heat-Moisture Treatment on the Physicochemical Quality of Glutinous Rice Flour for Making Taopian, a Traditional Chinese Pastry. Foods 2024; 13:2069. [PMID: 38998574 PMCID: PMC11241795 DOI: 10.3390/foods13132069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Taopian is a traditional Chinese pastry made from cooked glutinous rice flour. The effects of heat-moisture treatment (110 °C, 4 h; moisture contents 12-36%, w/w) on the preparation of cooked glutinous rice flour and taopian made from it were compared with the traditional method of stir-frying (180 °C, 30 s). The color of heat-moisture-treated (HMT) flours was darker. HMT flours exhibited a larger mean particle size (89.5-124 μm) and a greater relative crystallinity of starch (23.08-42.92%) and mass fractal dimension (1.77-2.28). The flours exhibited water activity in the range of 0.589-0.631. Although the oil-binding capacity of HMT flours was largely comparable to that of stir-fried flours, HMT flours exhibited a lower water absorption index. Accordingly, the taopian produced with HMT flours exhibited a lower brightness, accompanied by a stronger reddening and yellowing. In addition, more firmly bound water was observed in the taopian produced with HMT flour. The taopian made with HMT flour with a moisture content of 24% exhibited moderate hardness, adhesiveness and cohesiveness and received the highest score for overall acceptability (6.80). These results may be helpful to improve the quality of taopian by applying heat-moisture treatment in the preparation of cooked glutinous rice flour.
Collapse
Affiliation(s)
- Qiuping Xie
- College of Food Science, Southwest University, Chongqing 400715, China; (Q.X.); (S.W.); (S.L.)
| | - Shanshan Wu
- College of Food Science, Southwest University, Chongqing 400715, China; (Q.X.); (S.W.); (S.L.)
| | - Shiyu Lai
- College of Food Science, Southwest University, Chongqing 400715, China; (Q.X.); (S.W.); (S.L.)
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, China; (Q.X.); (S.W.); (S.L.)
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
5
|
Tarazi-Riess H, Shani-Levi C, Lesmes U. Heat-moisture and acid treatments can increase levels of resistant starch in arrowroot starch without adversely affecting its prebiotic activity in human colon microbiota. Food Funct 2024; 15:5813-5824. [PMID: 38747641 DOI: 10.1039/d4fo00711e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Carbohydrates are an important macronutrient whose processing and digestive fate can have numerous beneficial or adverse effects on consumer health. This study investigated the impact of heat-moisture treatments (HMT) and citric acid treatments (CAT) on arrowroot starch (ARS) with a focus on its physicochemical properties, digestibility, and influence on gut microbiota. The results revealed that HMT and CAT did not alter the colloidal characteristics of ARS but significantly affected the balance between amorphous and crystalline regions. Changes in thermal properties, morphology, and particle size were also observed. These can influence ARS shelf life and functional properties in various food applications. Furthermore, certain treatments in both processing methods increased the resistant starch (RS) content of ARS, with HMT for 16 hours at 80 °C and CAT with 0.6 M citric acid, resulting in the most pronounced effects. These changes coincided with reductions in rapidly digestible starch (RDS) levels and improvements in the ratio of slowly digestible starch (SDS) to RDS, which could potentially improve glycemic control. This study also examined the impact of processed ARS on colonic microbiota composition. It found that ARS-derived RS formed under HMT and CAT did not negatively affect the prebiotic potential of the RS fraction. Both treatments were associated with lowering the Firmicutes to Bacteroidetes ratio (F/B), a marker of gut health, and decreasing the relative abundance of Proteobacteria, microbes associated with adverse health effects. Additionally, CAT-derived RS showed a significant increase in the relative abundance of Roseburia, a beneficial gut bacterium. In conclusion, processing ARS through HMT and CAT techniques has the potential for enhancing its RS content, improving its glycemic impact, and positively influencing the gut microbiota composition, potentially contributing to gut health and metabolic well-being.
Collapse
Affiliation(s)
- Hila Tarazi-Riess
- Laboratory of Chemistry of Foods and Bioactives, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Carmit Shani-Levi
- Laboratory of Chemistry of Foods and Bioactives, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Uri Lesmes
- Laboratory of Chemistry of Foods and Bioactives, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
6
|
Gu Y, Zhang X, Song S, Wang Y, Sun B, Wang X, Ma S. Structural modification of starch and protein: From the perspective of gelatinization degree of oat flour. Int J Biol Macromol 2024; 260:129406. [PMID: 38224797 DOI: 10.1016/j.ijbiomac.2024.129406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
To clarify the relationship between gelatinization degree and structure characteristics, oat kernels were roasted to different gelatinization degree of 15 %-90 % based on tempering water content of 22.5 %-35 %, and the structure characteristics of starch and protein were evaluated. The results showed that the increased gelatinization degree dependent on tempering water content promoted protein aggregation on the surface of starch particles, forming larger aggregates with molecular weight >100 kDa. Oat kernels presented a dense starch gel network structure induced by gelatinized starch. Partial gelatinization of starch led to a decrease in pasting viscosities (setback viscosity, 3.91 Pa·s-1.59 Pa·s) and enthalpy (5.12 J/g-0.11 J/g). With the increase of gelatinization degree, the starch crystal structure conversed from A + V type to V type, accompanied by the formation of starch-lipid complexes and a decrease of relative crystallinity (22.28 %-8.72 %). Moreover, 50 % gelatinized oat flour possessed the highest β-sheet structure (38.04 %), but a decrease in surface hydrophobicity and an increase in endogenous fluorescence intensity were found in oat flour of gelatinization degree >50 %. This study provided a theoretical reference for the application of oat flour with different gelatinization degrees to match suitable products.
Collapse
Affiliation(s)
- Yujuan Gu
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Xiaoyan Zhang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Shuya Song
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Ying Wang
- College of Food and Drugs, Luoyang Polytechnic, Luoyang, Henan Province, PR China; The Geographical Indication Medicines and Life Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, Henan Province, PR China
| | - Binghua Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China
| | - Xiaoxi Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| | - Sen Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan Province, PR China.
| |
Collapse
|
7
|
Zhang C, Jia J, Gao M, Liu Y, Dou B, Zhang N. Effect of different heat-moisture treatment times on the structure, physicochemical properties and in vitro digestibility of japonica starch. Int J Biol Macromol 2024; 259:129173. [PMID: 38181923 DOI: 10.1016/j.ijbiomac.2023.129173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Modified starch was prepared from japonica starch (JS) by heat-moisture treatments (HMT). Under the same moisture content and HMT temperature, the effects of various HMT times on the structural, properties of JS and its in vitro digestibility properties were investigated. The results showed that adhesion occurred between the particles of japonica starch after the HMT, and there were depressions on the surface. The size of the JS particles increased, the short-range ordering and relative crystallinity of the HMT-modified starch increased and gradually decreased, reaching a peak of 36.51 % at 6 h, as the HMT time was extended. The pasting indexes of HMT-modified starch decreased and then increased with the increase of the HMT time; compared with JS, the thermal stability of HMT-modified starch increased while the pasting enthalpy decreased. All the HMT-modified starches were weakly gelatinous systems and pseudoplastic fluids. Following HMT, the amount of resistant starch (RS) and slowly digested starch (SDS) grew initially before declining. The amount of RS in HMT-modified starch peaked at 24.28 % when the HMT time was 6 h. The results of this research can serve as a theoretical foundation for the creation of modified japonica starch and its use in the food industry.
Collapse
Affiliation(s)
- Chujia Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Jianhui Jia
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China; College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China
| | - Man Gao
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ying Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Boxin Dou
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| |
Collapse
|
8
|
Wang Z, Qu L, Li J, Niu S, Guo J, Lu D. Effects of exogenous salicylic acid on starch physicochemical properties and in vitro digestion under heat stress during the grain-filling stage in waxy maize. Int J Biol Macromol 2024; 254:127765. [PMID: 38287575 DOI: 10.1016/j.ijbiomac.2023.127765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Waxy maize starch serves as a pivotal component in global food processing and industrial applications, while high temperature (HT) during the grain-filling stage seriously affects its quality. Salicylic acid (SA) has been recognized for its role in enhancing plant heat resistance. Nonetheless, its regulatory effect on the quality of waxy maize starch under HT conditions remains unclear. In this study, two waxy maize varieties, JKN2000 (heat-tolerant) and SYN5 (heat-sensitive) were treated with SA after pollination and then subjected to HT during the grain-filling stage to explore the effect of SA on grain yield and starch quality. The results indicate that exogenous SA under HT treatment led to an increase in kernel weight and starch content in both varieties. Moreover, SA reduced the HT-induced holes on the surfaces of starch granules, enlarged the starch granule size, elevated the amylopectin branching degree, and reduced amylopectin average chain length. Consequently, improvements of pasting viscosity and the decrease of retrogradation percentage of starch were observed with SA under HT. Exogenous SA reduced HT-induced rapidly digestible starch content in SYN5, but had no significant effect on that in JKN2000. In summary, SA pretreatment effectively alleviated the detrimental effects of HT on starch pasting and thermal properties of waxy maize.
Collapse
Affiliation(s)
- Zitao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Lingling Qu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Shiduo Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China
| | - Jian Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China.
| | - Dalei Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
9
|
Garofalo MA, Villon P, Cornejo F, Rosell CM. Exploring the effects of enzymatic and thermal treatments on banana starch characteristics. Int J Biol Macromol 2024; 254:127748. [PMID: 38287591 DOI: 10.1016/j.ijbiomac.2023.127748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Banana starch has a highly resistant starch (RS) and slow-digested starch (SDS) content, making it attractive as a functional ingredient. Unfortunately, banana starch requires modification processes due to the loss of RS and SDS during gelatinization because of its thermolabile characteristics. This study explores the effect of banana starch modification by enzymatic, heat moisture treatment (HMT) and dual modification (HMT+ enzymatic) on its nutritional (RS, SDS) and functional properties (hydration, structural, gelation, rheological). HMT and dual modifications decrease RS (from 44.62 g/100 g to 16.62 and 26.66 g/100 g, respectively) and increase SDS (from 21.72 g/100 g to 33.91 and 26.95 g/100 g, respectively) in raw starch but induce structural changes that enhance RS (from 3.10 g/100 g to 3.94 and 4.4 g/100 g, respectively) and SDS (from 2.58 g/100 g to 9.58 and 11.48 g/100 g) thermo-resistance in gelled starch. Also, changes in the functional properties of starches were evidenced, such as weaker gels (hardness < 41 g), lower water absorption (<12.35 g/g), high starch solubility (>1.77 g/100 g) and increased gelatinization temperature. Improved gelatinization temperature and RS thermostability resulted from modifications that could expand banana starch applications as a beverage and compote thickener agent.
Collapse
Affiliation(s)
- Ma Angeles Garofalo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Pedro Villon
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Fabiola Cornejo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Cristina M Rosell
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada; Institute of Agrochemistry and Food Technology (IATA-CSIC), Avenida Agustín Escardino, 7, Paterna 46980, Valencia, Spain
| |
Collapse
|
10
|
Wang C, Fang S, Ren C, Huang C, Zhu H, Zhang X, Zhao J. Cross-linked modifications of starches from colored highland barley and their characterizations, digestibility, and lipolysis inhibitory abilities in vitro. Food Res Int 2023; 174:113493. [PMID: 37986410 DOI: 10.1016/j.foodres.2023.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
To promote the stability and functionality of native starch from colored highland barley (CHBS), the cross-linked modifications with sodium trimetaphosphate (STMP)/sodium tripolyphosphate (STPP) and citric acid were conducted to prepare CHB resistant starches (CHRSs), whose physicochemical characteristics, digestibility, and lipolysis inhibitory potential were also assessed. Results showed that the resistant starch amounts in CHBS were significantly increased after cross-linking and differed slightly among CHRSs. Citric acid modification of CHBS resulted in significantly higher amylose amounts, solubilities, swelling powers, and water-binding capacities than those under STMP/STPP modification within the cultivars (p < 0.05), with their crystalline patterns of A-type (white and blue) and CB-type (black). STMP/STPP modified CHBS exhibited higher degrees of crystalline regions with B-type crystalline patterns. Due to the differences in structural properties and structure-based morphology, STMP/STPP cross-linked CHBS showed lower digestibility and citric acid cross-linked CHBS exhibited higher lipolysis inhibitory activities. Besides, the cross-linked modifications demonstrated more enhancements in functionalities of starches from white and blue cultivars than black cultivar.
Collapse
Affiliation(s)
- Cong Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Shijie Fang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chengjie Ren
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chuansheng Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Haoze Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaoyu Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jiayu Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
11
|
Wang C, Zhang X, Tian X, Zhang Z, Zhang X, Santhanam RK. Physical and enzymatic modifications of starch from blue highland barley and their characterizations, digestibility, and lipolysis inhibitory activities. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
12
|
Liu H, Duan J, Zhu J, Liu X. Effects of Highland Barley Flour with Different Particle Sizes on the Characteristics of Reconstituted Flour and Noodles. Foods 2023; 12:1074. [PMID: 36900591 PMCID: PMC10001254 DOI: 10.3390/foods12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
To study the effects of highland barley flour with different particle sizes on dough characteristics and noodle quality, highland barley flours (median particle sizes of 223.25, 143.12, 90.73, 42.33 and 19.26 μm, respectively) were mixed with the wheat flour to make noodles. The damaged starch content of highland barley flour with five particle sizes was 47.0, 61.0, 62.3, 102.0, and 108.0 g/kg, respectively. The reconstituted flour containing highland barley powder with smaller particle sizes showed higher viscosity and water absorption. The smaller the particle size of barley flour, the lower the cooking yield, shear force and pasting enthalpy of the noodles, and the higher the hardness of the noodles. As the particle size of barley flour decreases, the structural density of the noodles increases. This study is expected to provide a constructive reference for the development of barley-wheat composite flour and the production of barley-wheat noodles.
Collapse
Affiliation(s)
- Haibo Liu
- College of Food Science, Southwest University, Chongqing 400715, China
- College of Food Science, XinYang Agriculture and Forestry University, Xinyang 464000, China
| | - Jiaojiao Duan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Zhu
- College of Food Science, XinYang Agriculture and Forestry University, Xinyang 464000, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Wang C, Tian X, Zhang X, Zhang Z, Zhang X, Zeng X. Physicochemical Characterizations, Digestibility, and Lipolysis Inhibitory Effects of Highland Barley Resistant Starches Prepared by Physical and Enzymatic Methods. Molecules 2023; 28:molecules28031065. [PMID: 36770733 PMCID: PMC9920265 DOI: 10.3390/molecules28031065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
This study aimed to investigate the differences in the physicochemical and structural characteristics, digestibility, and lipolysis inhibitory potential in vitro of highland barley resistant starches (HBRSs) prepared by autoclaving (HBSA), microwave-assisted autoclaving (HBSM), isoamylase (HBSI) and pullulanase (HBSP) debranching modifications. Results revealed that the resistant starch content of native starch was significantly elevated after modifications. HBSA and HBSM showed distinctly higher swelling power and water-binding capacities along with lower amylose amounts and solubilities than those of HBSI and HBSP (p < 0.05). Fourier transform infrared spectroscopy and X-ray diffraction exhibited that HBSP displayed the highest degree of the ordered crystalline region and crystallinity with a mixture of CB- and V-type polymorphs. Meanwhile, HBSA and HBSM were characterized by their high degree of the amorphous region with a mixture of B- and V-type polymorphs. Physical and enzymatic modifications resulted in different functionalities of HBRSs, among which HBSP showed the lowest digestibility and HBSM exhibited the highest inhibitory activity on lipolysis due to their structure and structure-based morphology and particle size. This study provided significant insights into the development of native starch from highland barley as an alternative functional food.
Collapse
Affiliation(s)
- Cong Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (C.W.); (X.Z.); Tel.: +86-25-8439-6791 (X.Z.)
| | - Xinyi Tian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiayin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (C.W.); (X.Z.); Tel.: +86-25-8439-6791 (X.Z.)
| |
Collapse
|