1
|
Pang X, Zhang D, Xue H, Yao D, Shen H, Mou B, Gu P, Zhou R, Meng F, Wu J, Lei D, Bai B. Effects of Low Field Temperature on the Physicochemical Properties and Fine Structure Stability of High-Quality Rice Starch during the Grain Filling Stage. Foods 2024; 13:3094. [PMID: 39410128 PMCID: PMC11475225 DOI: 10.3390/foods13193094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The consumption of high-quality rice is increasing. Low temperatures during grain filling may affect the starch synthesis of high-quality rice and thus affect the quality of the rice itself. In this study, two high-quality conventional rice cultivars and two high-quality hybrid rice cultivars were selected and sown at a low temperature and normal temperature in the field. The low temperature during grain filling increased the amylose content, final viscosity, setback, short amylopectin chain ratio, and degree of amylopectin branching in four high-quality rice cultivars; meanwhile, the amylopectin content, gelatinization temperature, proportion of medium-long chain amylopectin, and the short-range order of starch decreased. Compared with the normal temperature, the alterations in the physicochemical and structural qualities of high-quality conventional rice cultivars YZX and NX42 were less significant at lower temperatures. The starch quality of high-quality conventional rice was more stable than hybrid high-quality rice.
Collapse
Affiliation(s)
- Xutong Pang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (X.P.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Dongmeng Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (X.P.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Haobo Xue
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (X.P.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Dongping Yao
- College of Plant Science and Technology, Hunan Biological and Electromechanical Polytechnic, Changsha 410127, China
| | - Hong Shen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Baohui Mou
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Panqi Gu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Ruijuan Zhou
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Fudie Meng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (X.P.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Jun Wu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (X.P.)
| | - Dongyang Lei
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (X.P.)
| | - Bin Bai
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| |
Collapse
|
2
|
Hu W, Wang R, Hao X, Li S, Zhao X, Xie Z, Wu S, Huang L, Tan Y, Tian L, Li D. OsLCD3 interacts with OsSAMS1 to regulate grain size via ethylene/polyamine homeostasis control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:705-719. [PMID: 38703081 DOI: 10.1111/tpj.16788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
A fundamental question in developmental biology is how to regulate grain size to improve crop yields. Despite this, little is still known about the genetics and molecular mechanisms regulating grain size in crops. Here, we provide evidence that a putative protein kinase-like (OsLCD3) interacts with the S-adenosyl-L-methionine synthetase 1 (OsSAMS1) and determines the size and weight of grains. OsLCD3 mutation (lcd3) significantly increased grain size and weight by promoting cell expansion in spikelet hull, whereas its overexpression caused negative effects, suggesting that grain size was negatively regulated by OsLCD3. Importantly, lcd3 and OsSAMS1 overexpression (SAM1OE) led to large and heavy grains, with increased ethylene and decreased polyamines production. Based on genetic analyses, it appears that OsLCD3 and OsSAMS1 control rice grain size in part by ethylene/polyamine homeostasis. The results of this study provide a genetic and molecular understanding of how the OsLCD3-OsSAMS1 regulatory module regulates grain size, suggesting that ethylene/polyamine homeostasis is an appropriate target for improving grain size and weight.
Collapse
Affiliation(s)
- Wenli Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Rong Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- College of Biology, Hunan University, Changsha, China
| | - Xiaohua Hao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
| | - Shaozhuang Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xinjie Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Zijing Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China
| | - Sha Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Liqun Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ying Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Lianfu Tian
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Dongping Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
3
|
Gao Y, Zhang L, Chen W, Zhou W, Deng G, Dai G, Bao J. Cooked Rice Textural Properties and Starch Physicochemical Properties from New Hybrid Rice and Their Parents. Foods 2024; 13:1035. [PMID: 38611341 PMCID: PMC11011368 DOI: 10.3390/foods13071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Although great progress has been made in the development of hybrid rice with increased yield, challenges for the improvement of grain quality still remain. In this study, the textural properties of cooked rice and physicochemical characteristics of starch were investigated for 29 new hybrid rice derived from 5 sterile and 11 restorer rice lines. Except for one sterile line Te A (P1) with high apparent amylose content (AAC) (26.9%), all other parents exhibited a low AAC. Gui 263 demonstrated the highest AAC (20.6%) among the restorer lines, so the Te A/Gui 263 hybrid displayed the highest AAC (23.1%) among all the hybrid rice. The mean AAC was similar between sterile, restorer lines and hybrid rice. However, the mean hardness of cooked rice and gels of sterile lines were significantly higher than that of restorer lines and hybrid rice (p < 0.05). Pasting temperature and gelatinization temperatures were significantly higher in the hybrids than in the restorer lines (p < 0.05). Cluster analysis based on the physicochemical properties divided the parents and hybrid rice into two major groups. One group included P1 (Te A), P12 and P14 and three hybrid rice derived from P1, while the other group, including 39 rice varieties, could be further divided into three subgroups. AAC showed significant correlation with many parameters, including peak viscosity, hot peak viscosity, cold peak viscosity, breakdown, setback, onset temperature, peak temperature, conclusion temperature, enthalpy of gelatinization, gel hardness and cooked rice hardness (p < 0.05). Principal component analysis revealed that the first component, comprised of the AAC, peak viscosity, breakdown, setback, onset temperature, peak temperature, conclusion temperature and gel hardness, explained 44.1% of variance, suggesting AAC is the most important factor affecting the grain quality of hybrid rice. Overall, this study enables targeted improvements to key rice grain quality attributes, particularly AAC and textural properties, that will help to develop superior rice varieties.
Collapse
Affiliation(s)
- Yan Gao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Lin Zhang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jinsong Bao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya 572025, China
| |
Collapse
|
4
|
Yang J, Zhang X, Wang D, Wu J, Xu H, Xiao Y, Xie H, Shi W. The deterioration of starch physiochemical and minerals in high-quality indica rice under low-temperature stress during grain filling. FRONTIERS IN PLANT SCIENCE 2024; 14:1295003. [PMID: 38317835 PMCID: PMC10839034 DOI: 10.3389/fpls.2023.1295003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Low temperatures during the grain-filling phase have a detrimental effect on both the yield and quality of rice grains. However, the specific repercussions of low temperatures during this critical growth stage on grain quality and mineral nutrient composition in high-quality hybrid indica rice varieties have remained largely unexplored. The present study address this knowledge gap by subjecting eight high-quality indica rice varieties to two distinct temperature regimes: low temperature (19°C/15°C, day/night) and control temperature (28°C/22°C) during their grain-filling phase, and a comprehensive analysis of various quality traits, with a particular focus on mineral nutrients and their interrelationships were explored. Exposure of rice plants to low temperatures during early grain filling significantly impacts the physicochemical and nutritional properties. Specifically, low temperature increases the chalkiness rate and chalkiness degree, while decreases starch and amylopectin content, with varying effects on amylose, protein, and gelatinization temperature among rice varieties. Furthermore, crucial parameters like gelatinization enthalpy (ΔH), gelatinization temperature range (R), and peak height index (PHI) all significantly declined in response to low temperature. These detrimental effects extend to rice flour pasting properties, resulting in reduced breakdown, peak, trough, and final viscosities, along with increased setback. Notably, low temperature also had a significant impact on the mineral nutrient contents of brown rice, although the extent of this impact varied among different elements and rice varieties. A positive correlation is observed between brown rice mineral nutrient content and factors such as chalkiness, gelatinization temperature, peak viscosity, and breakdown, while a negative correlation is established with amylose content and setback. Moreover, positive correlations emerge among the mineral nutrient contents themselves, and these relationships are further accentuated in the context of low-temperature conditions. Therefore, enhancing mineral nutrient content and increasing rice plant resistance to chilling stress should be the focus of breeding efforts to improve rice quality.
Collapse
Affiliation(s)
- Juan Yang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Xinzheng Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - De Wang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Jinshui Wu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Hang Xu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Yang Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Hongjun Xie
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Wanju Shi
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
5
|
Chen R, Li D, Fu J, Fu C, Qin P, Zhang X, Sun Z, He K, Li L, Zhou W, Wang Y, Wang K, Liu X, Yang Y. Exploration of quality variation and stability of hybrid rice under multi-environments. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:4. [PMID: 38225950 PMCID: PMC10788329 DOI: 10.1007/s11032-024-01442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/25/2023] [Indexed: 01/17/2024]
Abstract
Improving quality is an essential goal of rice breeding and production. However, rice quality is not solely determined by genotype, but is also influenced by the environment. Phenotype plasticity refers to the ability of a given genotype to produce different phenotypes under different environmental conditions, which can be a representation of the stability of traits. Seven quality traits of 141 hybrid combinations, deriving from the test-crossing of 7 thermosensitive genic male sterile (TGMS) and 25 restorer lines, were evaluated at 5 trial sites with intermittent sowing of three to five in Southern China. In the Yangtze River Basin, it was observed that delaying the sowing time of hybrid rice combinations leads to an improvement in their overall quality. Twelve parents were identified to have lower plasticity general combing ability (GCA) values with increased ability to produce hybrids with a more stable quality. The parents with superior quality tend to exhibit lower GCA values for plasticity. The genome-wide association study (GWAS) identified 13 and 15 quantitative trait loci (QTLs) associated with phenotype plasticity and BLUP measurement, respectively. Notably, seven QTLs simultaneously affected both phenotype plasticity and BLUP measurement. Two cloned rice quality genes, ALK and GL7, may be involved in controlling the plasticity of quality traits in hybrid rice. The direction of the genetic effect of the QTL6 (ALK) on alkali spreading value (ASV) plasticity varies in different cropping environments. This study provides novel insights into the dynamic genetic basis of quality traits in response to different cropping regions, cultivation practices, and changing climates. These findings establish a foundation for precise breeding and production of stable and high-quality rice. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01442-3.
Collapse
Affiliation(s)
- Rirong Chen
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082 Hunan China
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Dongxu Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- Software Engineering Institute, East China Normal University, Shanghai, 200062 China
| | - Jun Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Chenjian Fu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Peng Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Xuanwen Zhang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Zhenbiao Sun
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Kui He
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Liang Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Wei Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
| | - Yingjie Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Kai Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082 Hunan China
| | - Yuanzhu Yang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082 Hunan China
- State Key Laboratory of Hybrid Rice, Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs, Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410128 China
- College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| |
Collapse
|
6
|
Li Y, Kong Y, Wu Z, Xie F. Grain Quality Characterization before and after Processing. Foods 2023; 12:3728. [PMID: 37893620 PMCID: PMC10606295 DOI: 10.3390/foods12203728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Grains are an important part of a healthy diet, and provide most of the daily calories and nutrients [...].
Collapse
Affiliation(s)
| | | | | | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (Y.K.); (Z.W.)
| |
Collapse
|
7
|
Li Z, Zhang Q, Dong W, Liu Y, Wei S, Zuo M. FEDformer-Based Paddy Quality Assessment Model Affected by Toxin Change in Different Storage Environments. Foods 2023; 12:foods12081681. [PMID: 37107476 PMCID: PMC10138178 DOI: 10.3390/foods12081681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The storage environment can significantly impact paddy quality, which is vital to human health. Changes in storage can cause growth of fungi that affects grain quality. This study analyzed grain storage monitoring data from over 20 regions and found that five factors are essential in predicting quality changes during storage. The study combined these factors with the FEDformer (Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting) model and k-medoids algorithm to construct a paddy quality change prediction model and a grading evaluation model, which showed the highest accuracy and lowest error in predicting quality changes during paddy storage. The results emphasize the need for monitoring and controlling the storage environment to preserve grain quality and ensure food safety.
Collapse
Affiliation(s)
- Zihan Li
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Qingchuan Zhang
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Dong
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Yingjie Liu
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Siwei Wei
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zuo
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|