1
|
Shaik L, Chakraborty S. Sequential Pulsed Light and Ultrasound Treatments for the Inactivation of Saccharomyces cerevisiae and PPO and the Retention of Bioactive Compounds in Sweet Lime Juice. Foods 2024; 13:1996. [PMID: 38998503 PMCID: PMC11241773 DOI: 10.3390/foods13131996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024] Open
Abstract
Designing a pasteurization con dition for sweet lime juice while ensuring microbial safety, enzymatic stability, and high nutritional quality is crucial for satisfying stakeholder demands. The present research investigates the effects of matrix pH, ultrasound treatments, and sequential pulsed light on the microbial population, enzyme activity, and bioactive chemicals in sweet lime juice. The sequential pulsed light (PL: 0.6-0.84 J/cm2) and ultrasound (US: 0.2-0.4 W/cm3) treatments for sweet lime juice were optimized using response surface methodology (RSM). A three-factor full factorial design was used for this purpose. The independent variables encompassed pH (X1), PL effective fluence (X2, J/cm2), and US intensity (X3, W/cm3). The responses assessed included the inactivation of Saccharomyces cerevisiae (Y1, log cfu/mL) and polyphenol oxidase (PPO: Y2 in %) and the retention of vitamin C (Y3, %). The polynomial models were optimized using numerical optimization to attain the maximum desirability value (0.89). The optimized PL + US sample (0.8 J/cm2 + 0.4 W/cm3, respectively) at pH 3.5 resulted in a 5-log cycle reduction in S. cerevisiae count and a 90% inactivation in PPO activity and retained 95% of its vitamin C content. This optimized sample underwent further analysis, including phenolic profiling, assessment of microbial cell morphology, and examination of enzyme conformational changes. After sequential pulsed-light (0.8 J/cm2) and ultrasound (0.4 W/cm3) treatments, yeast cells showed unusual structural changes, indicating additional targets besides membranes. Following PL + US treatment, the PPO composition changed to 2.7 ± 0.1% α-helix, 33.9 ± 0.3% β-sheet, 1.4 ± 0.2% β-turn, and 62 ± 0.7% random coil. Impressively, the optimized PL + US sample maintained a sensory acceptance level similar to that of the untreated sample.
Collapse
Affiliation(s)
- Lubna Shaik
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune 411044, India
| | - Snehasis Chakraborty
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| |
Collapse
|
2
|
Olaoye S, Oladele S, Badmus T, Filani I, Jaiyeoba F, Sedara A, Olalusi A. Thermaland non-thermal pasteurization of citrus fruits: A bibliometrics analysis. Heliyon 2024; 10:e30905. [PMID: 38803896 PMCID: PMC11128875 DOI: 10.1016/j.heliyon.2024.e30905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Thermal and non-thermal pasteurization (TNP) process of food is not new to food technology, disparities in the merits and demerits of the two pasteurizations necessitate their uses concurrently. Bibliometric analysis of the subject matter is expedient to analyses of database for published publications. Especially to provide times, state-of-the art innovations and prospects of the techniques. In addressing these lacunas, we utilized VOSview visualization to establish connections among crucial elements within a dataset of 495 research publications gathered from Web of Science. This approach facilitated the identification of links and collaboration networks among key factors in the research landscape. Analysis of publications indicate thermal pasteurization is an age long practices, while non-thermal pasteurization is gaining more acceptance. This study exposed ranking differences in scholar's collaboration, citations of scholars, impactful institution and most published countries. United State, China, United Kingdom have largest publications of research in TNP among the top 10 countries. Coupling network and Sankey illustration showed new area of research where new researchers and scholars can begin new phase of findings.
Collapse
Affiliation(s)
- S.A. Olaoye
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - S.O. Oladele
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - T.A. Badmus
- Department of Agricultural and Bioresources Engineering, University of Calabar, Nigeria
| | - I. Filani
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - F.K. Jaiyeoba
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - A.M. Sedara
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| | - A.P. Olalusi
- Department of Agricultural and Environmental Engineering, Federal University of Technology Akure Nigeria, Nigeria
| |
Collapse
|
3
|
Zhao J, Mao X, Zhang Q, Xiao W, Yan A, Hu J, Jiang S, Li H, Wang Y. A convenient and effective method for determining organophosphorus pesticides in citrus fruits based on a novel dispersive solid phase extraction using UiO-66/Alg bead as the sorbent. Food Chem 2024; 438:137991. [PMID: 37980869 DOI: 10.1016/j.foodchem.2023.137991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
This work presents a novel, convenient and effective method for assaying organophosphorus pesticides (OPPs) in the pulp and peel of citrus fruits. In this method, shaped UiO-66/alginate (UiO-66/Alg) beads were employed to replace the powder sorbents used in traditional dispersive solid phase extraction (d-SPE) methods. The UiO-66/Alg beads can be easily separated by only using a tweezer within 1 min, which effectively simplifies the sample pretreatment and overcomes the shortages brought by the incomplete separation of powder sorbents. Moreover, the matrix compounds can be effectively excluded by UiO-66/Alg beads, and the UiO-66/Alg beads can be reused at least 8 times. The d-SPE conditions were optimized by a single factor test. The method shows satisfactory sensitivity, accuracy and precision. Furthermore, ATR-FTIR and UV-Vis-DRS were employed to investigate the adsorption mechanism. Finally, the developed method was applied to monitor the OPPs in ten different citrus fruits.
Collapse
Affiliation(s)
- Jiexue Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Qingqing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Weiming Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Aiping Yan
- Center of Analysis and Testing, Nanchang University, Nanchang 330047, China
| | - Jiateng Hu
- College of Food Science, Nanchang University, Nanchang 330047, China
| | - Songlin Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Haijun Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; College of Food Science, Nanchang University, Nanchang 330047, China
| |
Collapse
|
4
|
Rodrigues CV, Pintado M. Hesperidin from Orange Peel as a Promising Skincare Bioactive: An Overview. Int J Mol Sci 2024; 25:1890. [PMID: 38339165 PMCID: PMC10856249 DOI: 10.3390/ijms25031890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The pursuit for better skin health, driven by collective and individual perceptions, has led to the demand for sustainable skincare products. Environmental factors and lifestyle choices can accelerate skin aging, causing issues like inflammation, wrinkles, elasticity loss, hyperpigmentation, and dryness. The skincare industry is innovating to meet consumers' requests for cleaner and natural options. Simultaneously, environmental issues concerning waste generation have been leading to sustainable strategies based on the circular economy. A noteworthy solution consists of citrus by-product valorization, as such by-products can be used as a source of bioactive molecules. Citrus processing, particularly, generates substantial waste amounts (around 50% of the whole fruit), causing unprecedented environmental burdens. Hesperidin, a flavonoid abundant in orange peels, is considered to hold immense potential for clean skin health product applications due to its antioxidant, anti-inflammatory, and anticarcinogenic properties. This review explores hesperidin extraction and purification methodologies as well as key skincare application areas: (i) antiaging and skin barrier enhancement, (ii) UV radiation-induced damage, (iii) hyperpigmentation and depigmentation conditions, (iv) wound healing, and (v) skin cancer and other cutaneous diseases. This work's novelty lies in the comprehensive coverage of hesperidin's promising skincare applications while also demonstrating its potential as a sustainable ingredient from a circular economy approach.
Collapse
Affiliation(s)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| |
Collapse
|
5
|
Tan Q, Chen B, Wu C, Shao T. Exploring the potential nutritional role of bioflavonoids in exercise rehabilitation: a kinematic perspective. Front Nutr 2023; 10:1221800. [PMID: 37457973 PMCID: PMC10347382 DOI: 10.3389/fnut.2023.1221800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Qiaoyin Tan
- College of Education, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Bochao Chen
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Cuicui Wu
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Tianyi Shao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
6
|
Magalhães D, Vilas-Boas AA, Teixeira P, Pintado M. Functional Ingredients and Additives from Lemon by-Products and Their Applications in Food Preservation: A Review. Foods 2023; 12:foods12051095. [PMID: 36900612 PMCID: PMC10001058 DOI: 10.3390/foods12051095] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Citrus trees are among the most abundant fruit trees in the world, with an annual production of around 124 million tonnes. Lemons and limes are among the most significant contributors, producing nearly 16 million tonnes per year. The processing and consumption of citrus fruits generates a significant amount of waste, including peels, pulp, seeds, and pomace, which represents about 50% of the fresh fruit. Citrus limon (C. limon) by-products are composed of significant amounts of bioactive compounds, such as phenolic compounds, carotenoids, vitamins, essential oils, and fibres, which give them nutritional value and health benefits such as antimicrobial and antioxidant properties. These by-products, which are typically discarded as waste in the environment, can be explored to produce new functional ingredients, a desirable approach from a circular economy perspective. The present review systematically summarizes the potential high-biological-value components extracted from by-products to achieve a zero-waste goal, focusing on the recovery of three main fractions: essential oils, phenolic compounds, and dietary fibres, present in C. limon by-products, and their applications in food preservation.
Collapse
|