1
|
Wu D, Li H, Wang X, Chen R, Gong D, Long D, Huang X, Tang Z, Zhang Y. Screening and Whole-Genome Analysis of Probiotic Lactic Acid Bacteria with Potential Antioxidants from Yak Milk and Dairy Products in the Qinghai-Tibet Plateau. Antioxidants (Basel) 2025; 14:173. [PMID: 40002360 PMCID: PMC11851503 DOI: 10.3390/antiox14020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to isolate lactic acid bacteria (LAB) with strong antioxidant activity and potential probiotic properties from yak milk and dairy products in the Qinghai-Tibet Plateau. Initial screening of the isolates was performed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay and a hydrogen peroxide tolerance test. Subsequently, the antioxidant capacity of the isolates was assessed through five distinct assays: 2,2'-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, a DPPH scavenging assay, and a reducing activity assay. The strains with the stronger antioxidant potential were then further evaluated for their probiotic properties. Whole-genome sequencing was conducted on Lactobacillus plantarum QL01. Among 1205 isolates, 9 strains exhibited potential antioxidant capabilities. Following probiotic property evaluation, QL01 was identified as a safe candidate due to its strong growth, strong adhesion ability, and resilience to acidic, bile, and simulated gastrointestinal conditions. Genome analysis revealed that most of QL01's genes were involved in carbohydrate metabolism. Further examination of antibiotic resistance and virulence factors confirmed its safety, meanwhile genes linked to adhesion and stress responses underscored its probiotic potential. In conclusion, QL01, a strong antioxidant strain, was successfully isolated, and its probiotic potential was confirmed through comprehensive in vitro and genomic analyses.
Collapse
Affiliation(s)
- Diyan Wu
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Haichuan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Xuan Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Runtong Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| | - Zhenchuang Tang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (D.W.); (H.L.); (X.W.); (R.C.); (D.G.); (D.L.); (X.H.)
| |
Collapse
|
2
|
Salek S, Moazamian E, Mohammadi Bardbori A, Shamsdin SA. Anticancer effect of a combinatorial treatment of 5-fluorouracil and cell extract of some probiotic lactobacilli strains isolated from camel milk on colorectal cancer cells. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01228-2. [PMID: 39702737 DOI: 10.1007/s12223-024-01228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024]
Abstract
Colorectal cancer (CRC) has the highest mortality rate among cancer types, emphasizing the need for auxiliaries to 5-fluorouracil (5-FU) due to resistance and side effects. Metabolites produced by probiotic bacteria exhibit promising anticancer properties against CRC. In the current study, the anticancer effects of cell extract of three potential probiotic lactobacilli strains isolated from camel milk, Lactobacillus helveticus, Lactobacillus gallinarum, and Lactiplantibacillus plantarum, as well as that of the standard probiotic strain Lacticaseibacillus rhamnosus GG (LGG), on the human colon cancer cell line (HT-29) and the normal HEK293 cell line separately or in combination with 5-FU, were evaluated. This study isolated strains from camel milk and compared their probiotic properties to those of LGG. The cell viability, cell apoptosis, and Th17 cytokine production were assessed using the MTT assay, acridine orange/ethidium bromide (AO/EB) staining, and flow cytometry techniques, respectively. The cell extracts of lactobacilli strains combined with 5-FU reduced HT-29 cell viability effectively and increased cell apoptosis. Nevertheless, the cell extracts of lactobacilli strains combined with 5-FU controlled the cytotoxic impact of 5-FU on HEK-293 cell viability and reduced cell apoptosis. No significant differences were observed among the strains. Moreover, the cell extracts from the strains combined with 5-FU increased the levels of cytokines IFN-γ, TNF-α, and IL-17A, all of which contribute to immunity against tumors. The performance of the studied strains was similar to that of the standard probiotic strain (LGG). The investigation revealed that cell extracts from lactobacilli strains may serve as a promising complementary anticancer treatment.
Collapse
Affiliation(s)
- Sanaz Salek
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Elham Moazamian
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Afshin Mohammadi Bardbori
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gasteroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Zhao J, Zhao J, Zang J, Peng C, Li Z, Zhang P. Isolation, identification, and evaluation of lactic acid bacteria with probiotic potential from traditional fermented sour meat. Front Microbiol 2024; 15:1421285. [PMID: 39726969 PMCID: PMC11669687 DOI: 10.3389/fmicb.2024.1421285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Sour meat is a popular traditional fermented product and is a rich source of novel strains with probiotic potential. In this study, we aimed to assess the probiotic potential of lactic acid bacteria (LAB) strains isolated from fermented sour meat. Firstly, the microbial diversity of sour meat from four different areas in China was analyzed. The results showed that LAB were predominant in all samples. Subsequently, LAB were isolated from sour meat and a series of in vitro probiotic tests were carried out. A total of 130 bacterial strains with dissolved calcium were obtained and 10 strains showed a range of 89-97% survival in an acidic environment and high tolerance to bile salts. The ranges of hydrophobicity and auto-aggregation of 10 strains were 4.85-80.75% and 1.58-84.2%, respectively. Besides, all 10 strains exhibited high antimicrobial activity and antioxidant activity, of which, DZ24 possessed the strongest free radical scavenging (45.1%) and anti-lipid oxidizing ability (90.3%). Furthermore, DZ24 was identified as Lactiplantibacillus plantarum by 16S rRNA gene sequencing. Moreover, the fermentation indexes showed that DZ24 could rapidly reduce the pH to 4.14 and showed high salt and nitrite resistance and antioxidant ability. All the above experimental results indicate that Lactiplantibacillus plantarum DZ24 promise a suitable probiotic candidate for future applications in the fermented functional meats.
Collapse
Affiliation(s)
- Jiayi Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Jinshan Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Jinhong Zang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
- Qingdao JuDaYang Algae Industry Group Co., Ltd., Qingdao, China
| | - Chuantao Peng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Peng Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao, China
- Shandong Technology Innovation Center of Special Food, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
4
|
Wang S, Nie Z, Zhu L, Wu Y, Wen Y, Deng F, Zhao L. Probiotic Characteristics and the Anti-Inflammatory Effects of Lactiplantibacillus plantarum Z22 Isolated from Naturally Fermented Vegetables. Microorganisms 2024; 12:2159. [PMID: 39597548 PMCID: PMC11596721 DOI: 10.3390/microorganisms12112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Currently, there is increasing interest in the commercial utilization of probiotics isolated from traditional fermented food products. Therefore, this study aimed to investigate the probiotic potential of Lactiplantibacillus plantarum (L. plantarum) Z22 isolated from naturally fermented mustard. The results suggest that L. plantarum Z22 exhibits good adhesion ability, antibacterial activity, safety, and tolerance to acidic conditions and bile salts. We further determined the anti-inflammatory mechanism and properties of L. plantarum Z22 and found that L. plantarum Z22 could significantly reduce the secretion of pro-inflammatory cytokines, including interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and the expression of the pro-inflammatory mediator cyclooxygenase-2 (COX-2) protein in LPS-induced RAW 264.7 cells. In addition, L. plantarum Z22 also effectively inhibited the signaling pathways of nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPKs). This effect can be attributed to a decrease in the levels of reactive oxygen species (ROS) and increased heme oxygenase-1 (HO-1) expression. Moreover, whole-genome sequencing revealed that L. plantarum Z22 contains gene-encoding proteins with anti-inflammatory functions, such as beta-glucosidase (BGL) and pyruvate kinase (PK), as well as antioxidant functions, including thioredoxin reductase (TrxR), tyrosine-protein phosphatase, and ATP-dependent intracellular proteases ClpP. In summary, these results indicated that L. plantarum Z22 can serve as a potential candidate probiotic for use in fermented foods such as yogurt (starter cultures), providing a promising strategy for the development of functional foods to prevent chronic diseases.
Collapse
Affiliation(s)
- Shiyu Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| | - Ziyu Nie
- College of Animal Science and Technology, Hunan Biological Electromechanical Vocational College, Changsha 410128, China;
| | - Li Zhu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| | - Yanyang Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| | - Yashi Wen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| | - Fangming Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| | - Lingyan Zhao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (S.W.); (L.Z.); (Y.W.); (Y.W.)
| |
Collapse
|
5
|
Afshar N, Amini K, Mohajerani H, Saki S. Evaluation of probiotic bifidobacteria strains from Iranian traditional dairy products for their anti-hyperlipidemic potential. Folia Microbiol (Praha) 2024; 69:875-887. [PMID: 38198044 DOI: 10.1007/s12223-023-01124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
This study investigated the therapeutic potential of probiotic bifidobacteria, isolated from Iranian fermented dairy products, in a hyperlipidemic animal model. Bifidobacterium strains were extracted from traditional dairy samples and screened using physiological and phenotypic examinations, 16S rRNA analysis, and probiotic properties such as tolerance to gastrointestinal juice, antimicrobial activity, and antibiotic susceptibility. The ability of the screened bifidobacteria to reduce serum and liver lipids in vivo was tested using male Wistar rats. Six strains of bifidobacteria were isolated from traditional Iranian fermented dairy. These strains showed promising in vitro activity in lowering triglyceride and cholesterol, tolerance to simulated gastrointestinal juice, the ability to adhere to Caco-2 cells, acceptable antibiotic susceptibility, and a broad spectrum of antibacterial activity. The diet supplemented with isolated bifidobacteria significantly reduced serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), liver tissue lipid levels, and hepatic enzymes in animals when compared to a high-fat diet without strains (p < 0.01). Additionally, the potential probiotic-supplemented diet significantly increased bile acid excretion in the feces and upregulated hepatic CYP7A1 expression levels (p < 0.05), while NPC1L1, ACAT2, and MTP gene expressions in small intestinal cells were downregulated (p < 0.05). Bifidobacteria isolated from Iranian traditional dairy showed potential for use in the production of fermented foods that have hypolipemic activity in the host.
Collapse
Affiliation(s)
- Nasim Afshar
- Department of Microbiology, Faculty of Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| | - Kumarss Amini
- Department of Microbiology, Faculty of Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran.
| | | | - Sasan Saki
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
6
|
Ibrahim FM, El-Liethy MA, Abouzeid R, Youssef AM, Mahdy SZA, El Habbasha ES. Preparation and characterization of pectin/hydroxyethyl cellulose/clay/TiO 2 bionanocomposite films for microbial pathogen removal from contaminated water. Int J Biol Macromol 2024; 274:133511. [PMID: 38944095 DOI: 10.1016/j.ijbiomac.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Some of conventional wastewater disinfectants can have a harmful influence on the environment as well as human health. The aim of this investigation was synthesis and characterizes ecofriendly pectin/hydroxyethyl cellulose (HEC)/clay and pectin/HEC/clay incorporated with titanium dioxide nanoparticles (TiO2NPs) and use the prepared bionanocomposite as microbial disinfectants for real wastewater. Pectin/HEC/clay and pectin/HEC/clay/TiO2 bionanocomposite were characterized by various methods including X-ray diffraction (XRD), scanning electron microscope (SEM), and Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA). Mechanical properties and water vapor permeability (WVP) were carried out. The results of SEM showed that, the prepared bionanocomposite had a smooth surface. Additionally, TiO2 nanoparticles to the pectin/HEC/clay composites may lead to changes in the FTIR spectrum. The intensity of XRD peaks indicated that, TiO2NPs was small size crystallite. TGA illustrated that pectin has moderate thermal stability, while HEC generally exhibits good thermal stability. The TEM showed that, TiO2 nanoparticles have diameters <25 nm. On the other hand, antimicrobial activities of pectin/HEC/clay against Escherichia coli (E. coli), Staphylococcus aureus and Candida albicans have been enhanced by adding TiO2NPs. The minimum inhibitory concentration (MIC) of pectin/HEC/clay/TiO2 against E. coli was 200 mg/mL. Moreover, complete eradication of E. coli, Salmonella and Candida spp. from real wastewater was observed by using pectin/HEC/clay/TiO2 bionanocomposite. Finally, it can be concluded that, the synthesized bionanocomposite is environmentally friendly and considered an excellent disinfectant matter for removal of the microbial pathogens from wastewater to safely reuse.
Collapse
Affiliation(s)
- Faten Mohamed Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, 12622 Giza, Egypt.
| | - Ragab Abouzeid
- Cellulose and Paper Department, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Sara Z A Mahdy
- Chemistry Department, Faculty of Science, Benha University, Cairo, Egypt
| | - El Sayed El Habbasha
- Field crops Research Department, National Research Centre, P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
7
|
Salek S, Moazamian E, Mohammadi Bardbori A, Shamsdin SA. The anticancer effect of potential probiotic L. fermentum and L. plantarum in combination with 5-fluorouracil on colorectal cancer cells. World J Microbiol Biotechnol 2024; 40:139. [PMID: 38514489 DOI: 10.1007/s11274-024-03929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
5-Fluorouracil (5-FU) is an effective chemotherapy drug in the treatment of colorectal cancer (CRC). However, auxiliary or alternative therapies must be sought due to its resistance and potential side effects. Certain probiotic metabolites exhibit anticancer properties. In this study evaluated the anticancer and potential therapeutic activities of cell extracts potential probiotic strains, Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from the mule milk and the standard probiotic strain Lacticaseibacillus rhamnosus GG (LGG) against the human colon cancer cell line (HT-29) and the normal cell line (HEK-293) alone or in combination with 5-FU. In this study, L. plantarum and L. fermentum, which were isolated from mule milk, were identified using biochemical and molecular methods. Their probiotic properties were investigated in vitro and compared with the standard probiotic strain of the species L. rhamnosus GG. The MTT assay, acridine orange/ethidium bromide (AO/EB) fluorescent staining, and flow cytometry were employed to measure the viability of cell lines, cell apoptosis, and production rates of Th17 cytokines, respectively. The results demonstrated that the combination of lactobacilli cell extracts and 5-FU decreased cell viability and induced apoptosis in HT-29 cells. Furthermore, this combination protected HEK-293 cells from the cytotoxic effects of 5-FU, enhancing their viability and reducing apoptosis. Moreover, the combination treatment led to an increase in the levels of IL-17A, IFN-γ, and TNF-α, which can enhance anti-tumor immunity. In conclusion, the cell extracts of the lactobacilli strains probably can act as a potential complementary anticancer therapy.
Collapse
Affiliation(s)
- Sanaz Salek
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Elham Moazamian
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Afshin Mohammadi Bardbori
- Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Azra Shamsdin
- Gasteroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Ma W, Zhang W, Wang X, Pan Y, Wang M, Xu Y, Gao J, Cui H, Li C, Chen H, Zhang H, Xia C, Wang Y. Molecular identification and probiotic potential characterization of lactic acid bacteria isolated from the pigs with superior immune responses. Front Microbiol 2024; 15:1361860. [PMID: 38585699 PMCID: PMC10995931 DOI: 10.3389/fmicb.2024.1361860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Lactic acid bacteria (LAB) belong to a significant group of probiotic bacteria that provide hosts with considerable health benefits. Our previous study showed that pigs with abundant LAB had more robust immune responses in a vaccination experiment. In this study, 52 isolate strains were isolated from the pigs with superior immune responses. Out of these, 14 strains with higher antibacterial efficacy were chosen. We then assessed the probiotic features of the 14 LAB strains, including such as autoaggregation, coaggregation, acid resistance, bile salt resistance, and adhesion capability, as well as safety aspects such as antibiotic resistance, hemolytic activity, and the presence or absence of virulence factors. We also compared these properties with those of an opportunistic pathogen EB1 and two commercial probiotics (cLA and cLP). The results showed that most LAB isolates exhibited higher abilities of aggregation, acid and bile salt resistance, adhesion, and antibacterial activity than the two commercial probiotics. Out of the 14 strains, only LS1 and LS9 carried virulence genes and none had hemolytic activity. We selected three LAB strains (LA6, LR6 and LJ1) with superior probiotic properties and LS9 with a virulence gene for testing their safety in vivo. Strains EB1, cLA and cLP were also included as control bacteria. The results demonstrated that mice treated LAB did not exhibit any adverse effects on weight gain, organ index, blood immune cells, and ileum morphology, except for those treated with LS9 and EB1. Moreover, the antimicrobial effect of LR6 and LA6 strains was examined in vivo. The results indicated that these strains could mitigate the inflammatory response, reduce bacterial translocation, and alleviate liver, spleen, and ileum injury caused by Salmonella typhimurium infection. In addition, the LR6 treatment group showed better outcomes than the LA6 treatment group; treatment with LR6 substantially reduced the mortality rate in mice. The study results provide evidence of the probiotic properties of the LAB isolates, in particular LR6, and suggest that oral administration of LR6 could have valuable health-promoting benefits.
Collapse
Affiliation(s)
- Wenjie Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenli Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinrong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yu Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Mengjie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yunfei Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junxin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changwen Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changyou Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- College of Veterinary Medicine, Southwest University, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
| |
Collapse
|
9
|
Amenu D, Bacha K. Antagonistic Effects of Lactic Acid Bacteria Isolated from Ethiopian Traditional Fermented Foods and Beverages Against Foodborne Pathogens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10231-5. [PMID: 38381263 DOI: 10.1007/s12602-024-10231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Lactic acid bacteria (LAB) found in Ethiopian traditional fermented foods and beverages have potential antagonistic effects against foodborne pathogens due to their capacity to produce various antimicrobial metabolites. This study evaluated the antagonistic activity of LAB isolated from Ethiopian traditional fermented foods and beverages against foodborne pathogens and characterized their antimicrobial substances. A total of 180 traditional fermented foods and beverages were collected, and the antagonistic activities of LAB were evaluated against selected foodborne pathogens. The effects of pH, temperature, enzymes, and food additives on the antagonistic effects of cell-free supernatant produced by LAB were investigated. LAB identification and characterization were conducted using an integrated phenotypic approach and MALDI TOF MS spectrum analysis, and data were analyzed using one-way ANOVA and Tukey post hoc analysis. A total of 956 LAB were isolated, of which seventeen (17 LAB) isolates of Pediococcus pentosaceus (Pc. pentosaceus (n = 7)), Pediococcus acidilactici (Pc. acidilactici (n = 2)), Enterococcus faecium (Ec. faecium (n = 6)), and Lactococcus lactis (Lc. lactis (n = 2)) were screened for antagonistic activity based on their ability to produce bacteriocins, probiotic activity, and preservative potential. Pc. pentosaceus JULABB16, Pc. pentosaceus JULABB01, and Ec. faecium JULABBr39 showed strong antagonistic activity against all pathogens, with mean inhibition zone diameters ranging from 23.50 to 35.50 mm. Lc. lactis, Pc. pentosaceus, Pc. acidilactici, and Ec. faecium produced bioactive metabolites that were sensitive to proteolytic enzymes and capable of withstanding high temperatures (80-100 °C) and acid concentrations (pH 2-10). The CFS produced by Lc. lactis, Pc. pentosaceus, Pc. acidilactici, and Ec. faecium showed the most impending antagonistic activity against all pathogens. The bioactive substances produced by LAB isolates had promising effects against food spoilage and pathogenic bacteria, making them potential natural food preservatives.
Collapse
Affiliation(s)
- Desalegn Amenu
- Department of Biology, College of Natural Sciences, Jimma University, P.O. Box: 378, Jimma, Ethiopia.
- Department of Biology, College of Natural and Computational Sciences, Wollega University, P.O Box: 395, Nekemte, Oromia, Ethiopia.
| | - Ketema Bacha
- Department of Biology, College of Natural Sciences, Jimma University, P.O. Box: 378, Jimma, Ethiopia
| |
Collapse
|
10
|
Daza-Prieto B, Raicevic N, Cabal A, Hyden P, Mösenbacher T, Ladstätter J, Richter S, Stöger A, Joao Cardoso M, Chakeri A, Hasenberger P, Stadlbauer S, Mach RL, Martinovic A, Ruppitsch W. Enterococcus montenegrensis sp. nov., isolated from artisanal Montenegrin dry sausage. Int J Syst Evol Microbiol 2024; 74. [PMID: 38240650 DOI: 10.1099/ijsem.0.006206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
A novel, Gram-positive, facultative anaerobe, coccoid and non-motile bacterium, designated as CoE-012-22T was isolated from dried beef sausage (the original name in Montenegro is Govedji Kulen) manufactured in the municipality of Rozaje (Montenegro) in 2021. Cells of this strain were oxidase- and catalase-negative. Growth occurred at 4-50 °C, at pH 5.0-8.0 and with 0-6.5 % (w/v) NaCl in diverse growth media. MALDI-TOF analysis identified the strain as Enterococcus canintestini (log score 2). Phylogenetic analysis of the 16S rRNA gene and whole genome sequences assigned the strain to the genus Enterococcus. The closest relatives were E. canintestini DSM 21207T and E. dispar ATCC 51266T with 16S rRNA gene sequence pairwise similarities of 99.34 and 98.59 %, respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between isolate CoE-012-22T and other enterococci species were below the thresholds for species delineation thresholds (95.0 % ANI; 70.0 % dDDH) with maximum identities of 84.13 % (ANIb), 86.43 % (ANIm) and 28.4 % (dDDH) to E. saigonensis JCM 31193T and 70.97 % (ANIb), 88.99 % (ANIm) and 32.4 % (dDDH) to E. malodoratus ATCC 43197T. Two unknown Enterococcus isolates, Enterococcus sp. MJM12 and Enterococcus SMC-9, showed identities of 99.87 and 99.94 % (16S rRNA), 98.57 and 98.65 % (ANIb), 98.93 and 99.02 % (ANIm), and 89.8 and 90.0 % (dDDH) to strain CoE-012-22T and can therefore be regarded as the same species. Based on the characterization results, strain CoE-012-22T was considered to represent a novel species, for which the name Enterococcus montenegrensis sp. nov. is proposed. The type strain is CoE-012-22T (=DSM 115843T=NCIMB 15468T).
Collapse
Affiliation(s)
- Beatriz Daza-Prieto
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area of Biochemical Technology, Technical University Vienna, Vienna, Austria
| | - Nadja Raicevic
- FoodHub - Centre of Excellence for Digitalisationof Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Adriana Cabal
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Patrick Hyden
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Tobias Mösenbacher
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Johann Ladstätter
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Susanne Richter
- Institute of Veterinary Disease Control, Austrian Agency for Health and Food Safety, Mödling, Austria
| | - Anna Stöger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Maria Joao Cardoso
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
- ECDC Fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Ali Chakeri
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
- Center for Public Health, Medical University Vienna, Vienna, Austria
| | - Petra Hasenberger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Silke Stadlbauer
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area of Biochemical Technology, Technical University Vienna, Vienna, Austria
| | - Aleksandra Martinovic
- FoodHub - Centre of Excellence for Digitalisationof Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
11
|
Zhang Y, Li J, Pang Y, Shu Y, Liu S, Sang P, Sun X, Liu J, Yang Y, Chen M, Hong P. Systematic investigation of simultaneous copper biosorption and nitrogen removal from wastewater by an aerobic denitrifying bacterium of auto-aggregation. ENVIRONMENTAL RESEARCH 2023; 235:116602. [PMID: 37429397 DOI: 10.1016/j.envres.2023.116602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Finding effective methods for simultaneous removal of eutrophic nutrients and heavy metals has attracted increasing concerns for the environmental remediation. Herein, a novel auto-aggregating aerobic denitrifying strain (Aeromonas veronii YL-41) was isolated with capacities for copper tolerance and biosorption. The denitrification efficiency and nitrogen removal pathway of the strain were investigated by nitrogen balance analysis and amplification of key denitrification functional genes. Moreover, the changes in the auto-aggregation properties of the strain caused by extracellular polymeric substances (EPS) production were focused on. The biosorption capacity and mechanisms of copper tolerance during denitrification were further explored by measuring changes in copper tolerance and adsorption indices, as well as by variations in extracellular functional groups. The strain showed extremely strong total nitrogen removal ability, with 67.5%, 82.08% and 78.48% of total nitrogen removal when NH4+-N, NO2--N, and NO3--N were used as the only initial nitrogen source, respectively. The successful amplification of napA, nirK, norR, and nosZ genes further demonstrated that the strain accomplished nitrate removal through a complete aerobic denitrification pathway. The production of protein-rich EPS of up to 23.31 mg/g and an auto-aggregation index of up to 76.42% may confer a strong biofilm-forming potential to the strain. Under the stress of 20 mg/L copper ions, the removal of nitrate-nitrogen was still as high as 71.4%. In addition, the strain could achieve an efficient removal of 96.9% of copper ions at an initial concentration of 80 mg/L. Scanning electron microscopy and deconvolution analysis of characteristic peaks confirmed that the strains encapsulate heavy metals by secreting EPS and, meanwhile, form strong hydrogen bonding structures to enhance intermolecular forces to resist copper ion stress. This study provides an innovative and effective biological approach for the synergistic bioaugmentation removal of eutrophic substances and heavy metals from aquatic environments.
Collapse
Affiliation(s)
- Yancheng Zhang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Jing Li
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Yu Pang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Yilin Shu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Shu Liu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Pengcheng Sang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Xiaohui Sun
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Jiexiu Liu
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Yanfang Yang
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China
| | - Minglin Chen
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China.
| | - Pei Hong
- College of Life Sciences, School of Ecology and Environment, Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
12
|
Safi E, Haddad M, Hasan M, Al-Dalain SY, Proestos C, Siddiqui SA. Characterization of Potential Probiotic Activity of Lactic Acid Bacteria Isolated from Camel Colostrum by Biochemical and Molecular Methods. Vet Med Int 2023; 2023:8334152. [PMID: 37841508 PMCID: PMC10576644 DOI: 10.1155/2023/8334152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023] Open
Abstract
A total of 60 isolates of lactic acid bacteria (LAB) were isolated from Jordanian camel colostrum using biochemical and molecular methods. Two dominant species were identified, and they were Lactobacillus salivarius and Enterococcus faecium. The entire 60 isolated LAB were tested for their acidity and bile tolerance, antimicrobial activity, and antibiotic sensitivity to test their potential probiotic activity. All 60 isolates were tolerant to different pH concentrations (2, 3, 4, 5, 6, 7, 8, 9, and 10) with different survival rates (%). The entire isolates were also tolerant to different bile salt concentrations (0.2, 0.4, 0.6, 0.8, 1, 2, and 3) with different bile resistance (%). All isolates have a different range of antimicrobial activity against Staphylococcus aureus, E. coli, and Salmonella typhimurium. The 60 isolates were almost sensitive to ampicillin, amoxicillin, and clarithromycin when different concentrations were used except some isolates of intermediate resistance. Only 6% of the isolates were resistant to clarithromycin at a concentration of 15 µg per disc.
Collapse
Affiliation(s)
- Enas Safi
- Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt, Jordan
| | - Moawiya Haddad
- Department of Nutrition and Food Processing, Faculty of Agricultural Technology, Al-Balqa Applied University, P.O. Box 206, Al-Salt 19117, Jordan
| | - Maen Hasan
- Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt, Jordan
| | - Sati Y. Al-Dalain
- Department of Medical Support, Al-Karak University College, Al-Balqa Applied University, Salt, Jordan
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, Athens 15771, Greece
| | - Shahida A. Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, Straubing 94315, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, D-Quakenbrück 49610, Germany
| |
Collapse
|