1
|
Pirrone A, Naselli V, Gugino IM, Porrello A, Viola E, Craparo V, Vella A, Alongi D, Seminerio V, Carusi M, Radici C, Amato F, Guzzon R, Todaro A, Gaglio R, Settanni L, Maggio A, Moschetti G, Francesca N, Alfonzo A. Use of non-conventional yeasts for enhancing the sensory quality of craft beer. Food Res Int 2025; 208:116164. [PMID: 40263785 DOI: 10.1016/j.foodres.2025.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 04/24/2025]
Abstract
In recent years, craft beer production has grown significantly, sparking interest in using non-conventional yeasts to produce beers with distinctive flavors. This work investigated the impact of unconventional yeast strains, including Hanseniaspora uvarum YGA34 (EP1), Lachanchea thermotolerans MNF105 (EP2), Candida oleophila YS209 (EP3) and Starmerella lactis-condensi MN412 (EP4), as innovative co-starter cultures alongside the widely used Saccharomyces cerevisiae US-05 . The control trial was inoculated with S. cerevisiae US-05 (TC) alone. For the first time, C. oleophila and St. lactis-condensi have been applied for beer production and also result have been compared with H. uvarum and L. thermotolerans. These strains, selected from high-sugar matrices such as manna and fermented honey by-products, exhibited logarithmic growth cycles of 5-8 during fermentation. Starmerellalactis-condensi MN412 and L.thermotolerans MNF105 efficiently consumed fructose, glucose, and sucrose in beer must before the addition of S. cerevisiae US-05, with L.thermotolerans also effectively consuming maltose. The highest glycerol content (3.36 g/L) was observed in the EP4 trial with St. lactis-condensi MN412. Esters were the dominant volatile compounds in all samples (91.2-237.3 mg/L), with the EP2 trial showing the highest ester content (237.3 mg/L), primarily due to ethyl octanoate (125.5 mg/L). EP2 also had the most favourable sensory profile, excelling in 10 attributes, while other beers showed notable performances. These unconventional yeast strains exhibited significant differences compared to beers brewed with S. cerevisiae alone. Additionally, their application led to an increase in volatile organic compounds. In conclusion, novel yeast strains isolated from high-sugar matrices showed excellent technological properties, making them promising co-starters and starter in innovative craft beer production.
Collapse
Affiliation(s)
- Antonino Pirrone
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Vincenzo Naselli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Ignazio Maria Gugino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Bldg. 17, Italy
| | - Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Valentina Craparo
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Azzurra Vella
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Davide Alongi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Venera Seminerio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Micaela Carusi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Carmelo Radici
- Birra Epica, Area Artigianale - C/da Filippello 98069 - SINAGRA (ME), Sicily, Italy
| | - Filippo Amato
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Raffaele Guzzon
- Fondazione Edmund Mach, Via Mach 1, TN, San Michele all'Adige, 38010, Italy
| | - Aldo Todaro
- Department of Agriculture, Food and Enviroment, University of Catania, Via Santa Sofia 98, 95123 Catania, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, 90128 Palermo, Bldg. 17, Italy
| | - Giancarlo Moschetti
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy.
| | - Antonio Alfonzo
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| |
Collapse
|
2
|
Hinojosa-Avila CR, Chedraui-Urrea JJT, Estarrón-Espinosa M, Gradilla-Hernández MS, García-Cayuela T. Chemical profiling and probiotic viability assessment in Gueuze-style beer: Fermentation dynamics, metabolite and sensory characterization, and in vitro digestion resistance. Food Chem 2025; 462:140916. [PMID: 39216372 DOI: 10.1016/j.foodchem.2024.140916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Probiotic viability, metabolite concentrations, physicochemical parameters, and volatile compounds were characterized in Gueuze beers formulated with probiotic lactic acid bacteria (LAB) and yeast. Additionally, the sensory profile of the beers and the resistance of the probiotics to digestion were determined. The use of 2 International Bitterness Units resulted in high concentrations of probiotic LAB but a decline in probiotic yeast as pH decreased. Secondary fermentation led to the consumption of maltose, citric acid, and malic acid, and the production of lactic and propionic acids. Carbonation and storage at 4 °C had minimal impact on probiotic viability. The addition of probiotic LAB resulted in a distinct aroma profile with improved sensory characteristics. Our results demonstrate that sour beers produced with probiotic LAB and a probiotic yeast, and fermented using a two-step fermentation process, exhibited optimal physicochemical parameters, discriminant volatile compound profiles, promising sensory characteristics, and high probiotic concentrations after digestion.
Collapse
Affiliation(s)
- Carlo R Hinojosa-Avila
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jorge J T Chedraui-Urrea
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Prol. Canal de Miramontes, Coapa, San Bartolo el Chico, Tlalpan, 14380 Ciudad de México, Mexico
| | - Mirna Estarrón-Espinosa
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, el Bajío del Arenal, Zapopan 45019, Jalisco, Mexico
| | | | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
3
|
Ou SJL, Yusri H, Yang D, Khoo CM, Liu MH. Effects of Moderate Consumption of a Probiotic-Fermented Sour Beer on the Inflammatory, Immunity, Lipid Profile, and Gut Microbiome of Healthy Men in a Participant-Blinded, Randomized-Controlled Within-Subject Crossover Study. Food Sci Nutr 2024; 12:10867-10880. [PMID: 39723031 PMCID: PMC11666817 DOI: 10.1002/fsn3.4627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/17/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024] Open
Abstract
Probiotic sour beer (PRO) fermented with Lacticaseibacillus paracasei Lpc-37 is a novel beverage option, which may potentially offer health benefits. In this study, the effects of PRO are evaluated on the inflammatory, immunity, lipid profile, and gut microbiome of consumers in a 5-week, participant-blinded, randomized-controlled within-subject crossover study. Twenty-one healthy male participants consumed 330 mL of PRO and normal sour beer (CON) daily for 2 weeks each with a 1 week of washout. Stool and blood samples were collected before and after each intervention. Significant increases for Proteobacteria and Bacteroides and a significant decrease in Dialister (p < 0.05) were observed in the CON group, while gut microbiome populations remained relatively stable in the PRO group. A significant increase was also found in HDL-cholesterol after PRO (p < 0.05), while no significant differences were observed in inflammatory and immunity profiles. Further research is warranted to explore its HDL-cholesterol increasing potential.
Collapse
Affiliation(s)
- Sean Jun Leong Ou
- Department of Food Science & TechnologyNational University of SingaporeSingaporeSingapore
| | - Hafizah Yusri
- Department of Food Science & TechnologyNational University of SingaporeSingaporeSingapore
| | - Dimeng Yang
- Department of Food Science & TechnologyNational University of SingaporeSingaporeSingapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Mei Hui Liu
- Department of Food Science & TechnologyNational University of SingaporeSingaporeSingapore
| |
Collapse
|
4
|
Salas-Millán JÁ, Aguayo E. Fermentation for Revalorisation of Fruit and Vegetable By-Products: A Sustainable Approach Towards Minimising Food Loss and Waste. Foods 2024; 13:3680. [PMID: 39594095 PMCID: PMC11594132 DOI: 10.3390/foods13223680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
In a world increasingly focused on sustainability and integrated resource use, the revalorisation of horticultural by-products is emerging as a key strategy to minimise food loss and waste while maximising value within the food supply chain. Fermentation, one of the earliest and most versatile food processing techniques, utilises microorganisms or enzymes to induce desirable biochemical transformations that enhance the nutritional value, digestibility, safety, and sensory properties of food products. This process has been identified as a promising method for producing novel, high-value food products from discarded or non-aesthetic fruits and vegetables that fail to meet commercial standards due to aesthetic factors such as size or appearance. Besides waste reduction, fermentation enables the production of functional beverages and foods enriched with probiotics, antioxidants, and other bioactive compounds, depending on the specific horticultural matrix and the types of microorganisms employed. This review explores the current bioprocesses used or under investigation, such as alcoholic, lactic, and acetic acid fermentation, for the revalorisation of fruit and vegetable by-products, with particular emphasis on how fermentation can transform these by-products into valuable foods and ingredients for human consumption, contributing to a more sustainable and circular food system.
Collapse
Affiliation(s)
- José Ángel Salas-Millán
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla Del Mar, 30202 Cartagena, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain;
- Food Quality and Health Group, Institute of Plant Biotechnology (IBV-UPCT), Campus Muralla Del Mar, 30202 Cartagena, Spain
| |
Collapse
|
5
|
Herkenhoff ME, Brödel O, Frohme M. Hops across Continents: Exploring How Terroir Transforms the Aromatic Profiles of Five Hop ( Humulus lupulus) Varieties Grown in Their Countries of Origin and in Brazil. PLANTS (BASEL, SWITZERLAND) 2024; 13:2675. [PMID: 39409545 PMCID: PMC11478771 DOI: 10.3390/plants13192675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Humulus lupulus, or hops, is a vital ingredient in brewing, contributing bitterness, flavor, and aroma. The female plants produce strobiles rich in essential oils and acids, along with bioactive compounds like polyphenols, humulene, and myrcene, which offer health benefits. This study examined the aromatic profiles of five hop varieties grown in Brazil versus their countries of origin. Fifty grams of pelletized hops from each strain were collected and analyzed using HS-SPME/GC-MS to identify volatile compounds, followed by statistical analysis with PLS-DA and ANOVA. The study identified 330 volatile compounds and found significant aromatic differences among hops from different regions. For instance, H. Mittelfrüher grown in Brazil has a fruity and herbaceous profile, while the German-grown variety is more herbal and spicy. Similar variations were noted in the Magnum, Nugget, Saaz, and Sorachi Ace varieties. The findings underscore the impact of terroir on hop aromatic profiles, with Brazilian-grown hops displaying distinct profiles compared to their counterparts from their countries of origin, including variations in aromatic notes and α-acid content.
Collapse
Affiliation(s)
- Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Oliver Brödel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany; (O.B.); (M.F.)
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany; (O.B.); (M.F.)
| |
Collapse
|
6
|
Suzuki JY, Herkenhoff ME, Brödel O, Cucick ACC, Frohme M, Saad SMI. Exploring the potential of red pitaya pulp (Hylocererus sp.) as a plant-based matrix for probiotic delivery and effects on betacyanin content and flavoromics. Food Res Int 2024; 192:114820. [PMID: 39147472 DOI: 10.1016/j.foodres.2024.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
This study evaluated the potential of red pitaya pulp fermented with Lacticaseibacillus paracasei subsp. paracasei F-19 (F-19) as a base for probiotic products. Physicochemical parameters, sugar, betacyanin, and phenolic contents, and antioxidant activity were analyzed over 28 days at 4 °C and compared to a non-fermented pulp, and to a pulp fermented with Bifidobacterium animalis subsp. lactis BB-12 (BB-12). Volatile compounds were identified using HS-SPME/GC-MS. Probiotic viability during storage and survival through in vitro-simulated gastrointestinal tract (GIT) stress were assessed. Red pitaya pulp, rich in moisture (85.83 g/100 g), carbohydrates (11.65 g/100 g), and fibers (2.49 g/100 g), supported fermentation by both strains. F-19 and BB-12 lowered pH, with F-19 showing stronger acidification, and maintained high viability (8.85-8.90 log CFU/mL). Fermentation altered sugar profiles and produced unique volatile compounds, enhancing aroma and sensory attributes. F-19 generated 2-phenylethanol, a unique flavor compound, absent in BB-12. Phenolic content initially increased but antioxidant activity decreased during storage. Betacyanin remained stable for up to 14 days. Red pitaya improved F-19 viability through the simulated GIT, while BB-12 populations significantly decreased (p < 0.05). These results suggest red pitaya pulp is a promising plant-based matrix for F-19, offering protection during digestion and highlighting its potential as a functional food with enhanced bioactive compound bioavailability and sensory attributes.
Collapse
Affiliation(s)
- Juliana Yumi Suzuki
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | | | - Ana Clara Candelaria Cucick
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | | | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| |
Collapse
|
7
|
Ramos‐Parra PA, De Anda‐Lobo IC, Viejo CG, Villarreal‐Lara R, Clorio‐Carillo JA, Marín‐Obispo LM, Obispo‐Fortunato DJ, Escobedo‐Avellaneda Z, Fuentes S, Pérez‐Carillo E, Hernandez‐Brenes C. Consumer insights into the at-home liking of commercial beers: Integrating nonvolatile and volatile flavor chemometrics. Food Sci Nutr 2024; 12:4063-4075. [PMID: 38873484 PMCID: PMC11167190 DOI: 10.1002/fsn3.4066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 06/15/2024] Open
Abstract
Consumer acceptability of beers is influenced by product formulation and processing conditions, which impart unique sensory profiles. This study used multivariate techniques to evaluate at-home consumer sensory acceptability of six commercial beers considering their style, fermentation type, and chemical composition. Samples included top-fermented beers (American India Pale Ale and Stout) and bottom-fermented beers (Pilsner, zero-alcohol Pilsner, Vienna Lager, and Munich Dunkel). Beer consumers (n = 50) conducted sensory hedonic, check-all-that-apply (CATA) and just-about-right (JAR) tests. Chemometric variables included iso-alpha-acids, hordenine, and volatile aromatic compounds, quantified by chromatographic methods, whereas bitterness units (IBU) were determined spectrophotometrically. Lager beers had higher acceptability than top-fermented beer (p < .05) for all attributes. Light-colored beers and medium-height foams had the highest liking scores for visual sensory attributes. Higher concentrations of bitter-tasting molecules, hordenine, and acidity decreased the liking scores of top-fermented (Ale) beers, as a sensory penalty analysis suggested. In contrast, the most favored beers (Pilsners and Munich Dunkel) contained higher fusel alcohol esters linked to fruity aromatic notes. Although a low conversion rate of fatty acids into fruity esters was noted in nonalcoholic Pilsner, its overall liking score was not statistically different from the alcoholic version. However, consumers perceived the nonalcoholic Pilsner as less bitter than its alcoholic counterpart even when IBUs were nonsignificantly different. This study emphasized the significance of understanding beer chemometrics to comprehend consumer acceptability, highlighting the crucial role of bitter molecules. Hence, hordenine, acidity, and volatile contents provided additional and valuable insights into consumer preferences.
Collapse
Affiliation(s)
| | | | - Claudia Gonzalez Viejo
- Digital Agriculture, Food and Wine Research Group, Faculty of SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Raúl Villarreal‐Lara
- Tecnologico de MonterreyEscuela de Ingeniería y CienciasMonterreyNLMéxico
- SensoLab SolutionsCentro de Innovación y Transferencia Tecnológica (CIT2)MonterreyMexico
| | | | | | | | | | - Sigfredo Fuentes
- Tecnologico de MonterreyEscuela de Ingeniería y CienciasMonterreyNLMéxico
- Digital Agriculture, Food and Wine Research Group, Faculty of SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Carmen Hernandez‐Brenes
- Tecnologico de MonterreyEscuela de Ingeniería y CienciasMonterreyNLMéxico
- Tecnologico de MonterreyInstitute for Obesity ResearchMonterreyNLMéxico
| |
Collapse
|
8
|
Hinojosa-Avila CR, García-Gamboa R, Chedraui-Urrea JJT, García-Cayuela T. Exploring the potential of probiotic-enriched beer: Microorganisms, fermentation strategies, sensory attributes, and health implications. Food Res Int 2024; 175:113717. [PMID: 38129037 DOI: 10.1016/j.foodres.2023.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Probiotic-enriched beers have emerged as an innovative solution for delivering beneficial microorganisms, particularly appealing to consumers seeking non-dairy options. However, navigating the complex beer environment presents challenges in effectively cultivating specific probiotic strains. This review aims to promote innovation and distinctiveness within the brewing industry by providing insights into current research on the integration of probiotic microorganisms into beer production, thereby creating a functional beverage. The review explores the effects of probiotic incorporation on the functional, technological, and sensory attributes of beer, distinguishing contributions from bacterial and yeast, as well as potential health benefits. Probiotic microorganisms encounter hurdles during beer production, including ethanol, hops, CO2 levels, pH, oxygen, and nutrients. Ethanol tolerance mechanisms vary among bacteria and yeasts, with specific lactic acid bacteria showing resistance to hop compounds. Hops, crucial for beer categorization, exert a timing-dependent impact on probiotics-early isomerization impedes growth, while late additions yield non-isomerized antibacterial properties. Effective probiotic integration necessitates precise post-fermentation addition stages to ensure viability and flavor. The sensory impact and consumer reception of probiotic-enriched beers require further exploration. Probiotics must endure storage conditions to qualify as functional beer, while limited research investigates health advantages, urging enhanced production techniques, sensory optimization, and clinical validation.
Collapse
Affiliation(s)
- Carlo R Hinojosa-Avila
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Ave. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Ricardo García-Gamboa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jorge J T Chedraui-Urrea
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Prol. Canal de Miramontes, Coapa, San Bartolo el Chico, Tlalpan, 14380 Ciudad de México, Mexico
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Food and Biotech Lab, Ave. General Ramón Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
9
|
Herkenhoff ME, de Medeiros IUD, Garutti LHG, Salgaço MK, Sivieri K, Saad SMI. Cashew By-Product as a Functional Substrate for the Development of Probiotic Fermented Milk. Foods 2023; 12:3383. [PMID: 37761092 PMCID: PMC10528859 DOI: 10.3390/foods12183383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cashew (Anacardium occidentale) processing generates a by-product (CB) with potential for health benefits and that could be a favorable ingredient to be added to a probiotic food matrix. This study aimed to assess the functional attributes of CB in fermented milk with a probiotic and a starter culture using in vitro gastrointestinal conditions. Two formulations were tested, without CB (Control Formulation-CF) and with CB (Test Formulation-TF), and the two strains most adapted to CB, the probiotic Lacticaseibacillus paracasei subsp. paracasei F19® and the starter Streptococcus thermophilus ST-M6®, were chosen to be fermented in the CF and the TF. During a 28-day period of refrigeration (4 °C), both strains used in the CF and TF maintained a population above 8.0 log CFU/mL. Strains cultured in the TF had a significant increase in total phenolic compounds and greater antioxidant potential during their shelf life, along with improved survival of F19® after in vitro-simulated gastrointestinal conditions. Our study revealed the promising potential of CB in the probiotic beverage. The CB-containing formulation (TF) also exhibited higher phenolic content and antioxidant activity. Furthermore, it acted as a protector for bacteria during gastrointestinal simulation, highlighting its potential as a healthy and sustainable product.
Collapse
Affiliation(s)
- Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Igor Ucella Dantas de Medeiros
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Luiz Henrique Grotto Garutti
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| | - Mateus Kawata Salgaço
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 s/n, Araraquara 14800-903, SP, Brazil; (M.K.S.); (K.S.)
| | - Katia Sivieri
- School of Pharmaceutical Sciences of Araraquara, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01 s/n, Araraquara 14800-903, SP, Brazil; (M.K.S.); (K.S.)
| | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil; (M.E.H.); (I.U.D.d.M.); (L.H.G.G.)
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo 05508-000, SP, Brazil
| |
Collapse
|