1
|
Ratseewo J, Chumroenphat T, Li H, Siriamornpun S. Changes in chemical composition, volatile compound, and bioactive compounds retention in shallots ( Allium ascalonicum L.) under different drying methods. Food Chem X 2025; 27:102419. [PMID: 40231128 PMCID: PMC11995090 DOI: 10.1016/j.fochx.2025.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Shallots (Allium ascalonicum L.) are widely used in culinary and medicinal applications due to their rich bioactive compounds and health benefits. This study examines the effects of freeze drying, sun drying, and hot air drying at 40, 60, and 80 °C on chemical and bioactive compounds in shallots. Hot air drying at 80 °C had the highest total phenolic and flavonoid contents. Freeze drying increased syringic, p-coumaric, protocatechuic, vanillic, and ferulic acids. Quercetin was highest in freeze drying. Apigenin increased in samples that was dried by hot air drying at 80 °C. Proline was the major amino acid; arginine increased by 34 % in sun drying. Fourier Transform Infrared Spectroscopy (FTIR) revealed polysaccharides, lipids-proteins, and amino acids. Eucalyptol was the predominant volatile component in fresh shallot and most preserved by freeze drying. The results underscore the significance of choosing suitable drying methods to preserve shallot bioactive compounds and antioxidant properties.
Collapse
Affiliation(s)
- Jiranan Ratseewo
- Division of Food Innovation and Technology, Faculty of Liberal Arts and Science, Sisaket Rajabhat University, Sisaket 33000, Thailand
| | - Theeraphan Chumroenphat
- Aesthetic Sciences and Health Program, Faculty of Thai Traditional and Alternative Medicine, Ubon Ratchathani Rajabhat University, Ubonratchathani 34000, Thailand
| | - Hua Li
- Department of Cuisine and Nutrition, Yangzhou University, Yangzhou, Jiangsu Province 225127, China
| | - Sirithon Siriamornpun
- Research Unit of Thai Food Innovation, Department of Food Technology and Nutrition, Mahasarakham University, Kantarawichai, Maha Sarakham 44150, Thailand
| |
Collapse
|
2
|
Song E, Gwon H, Choi J, Islam MA, Chun J, Chang YH, Hwang J. Enhancing Functional Properties and Shelf Life of Oryza sativa L. via Grain Stabilization Techniques. Foods 2025; 14:596. [PMID: 40002040 PMCID: PMC11854372 DOI: 10.3390/foods14040596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Background:Oryza sativa L. is one of the main staple crops in the South Korea. While rice production has remained stable over the past decades, rice consumption has gradually declined, leading to a rapid stockpile in rice inventory. Conventional rice storage methods often fail to preserve functional properties and long-term stability, necessitating innovative processing techniques. Methods: To address this issue, we developed a grain stabilization technique (GST) to enhance the functionality and shelf life of white rice (WR), brown rice (BR), and rice germ (RG). The GST process was conducted in a single-batch system, integrating a controlled temperature cycle (65~85 °C) with 60 rpm rotation, far-infrared (26,400 W/m2), and ultraviolet (254 nm, 60,880 J/m2) irradiation in an enclosed chamber equipped with an exhaust system for moisture, odor, and impurity removal. The process was followed by air drying (25 °C, 15 h) to ensure stability. Results: The GST significantly increased resistant starch content in BR and WR by 214% and 27%, respectively, but not in RG. Additionally, GST enhanced the contents of campesterol, stigmasterol, β-sitosterol, and octacosanol in BR and RG, but not significantly in WR. Furthermore, this technique markedly reduced moisture content, acidity, and bacterial counts over a 90-day storage period and kept mycotoxin levels within safe limits in WR, BR, and RG. GST also altered the microstructures of WR and BR, indicating gelatinization and amorphization of starch granules. Conclusions: These findings contribute to advancing food science by presenting GST as a transformative method to extend shelf life and improve the nutritional profile of rice, aligning with global efforts to reduce food waste, improve dietary health, and develop sustainable food processing technologies.
Collapse
Affiliation(s)
- Eunsu Song
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, Yongin 17058, Republic of Korea; (E.S.); (Y.H.C.)
| | - Hyeeun Gwon
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, Yongin 17058, Republic of Korea; (E.S.); (Y.H.C.)
| | - Jaeyoung Choi
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, Yongin 17058, Republic of Korea; (E.S.); (Y.H.C.)
| | - Md Atiqual Islam
- Department of Nutrition and Food Engineering, Daffodil International University, Dhaka 1216, Bangladesh;
| | - Jiyeon Chun
- Department of Food Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea;
- Bio-Healthcare Food Research & Analysis Center, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yun Hee Chang
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, Yongin 17058, Republic of Korea; (E.S.); (Y.H.C.)
| | - Jinah Hwang
- Department of Food and Nutrition, College of Natural Sciences, Myongji University, Yongin 17058, Republic of Korea; (E.S.); (Y.H.C.)
| |
Collapse
|
3
|
Ramachandran RP, Nadimi M, Cenkowski S, Paliwal J. Advancement and Innovations in Drying of Biopharmaceuticals, Nutraceuticals, and Functional Foods. FOOD ENGINEERING REVIEWS 2024; 16:540-566. [PMID: 39759549 PMCID: PMC11698300 DOI: 10.1007/s12393-024-09381-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/19/2024] [Indexed: 01/07/2025]
Abstract
Drying is a crucial unit operation within the functional foods and biopharmaceutical industries, acting as a fundamental preservation technique and a mechanism to maintain these products' bioactive components and nutritional values. The heat-sensitive bioactive components, which carry critical quality attributes, necessitate a meticulous selection of drying methods and conditions backed by robust research. In this review, we investigate challenges associated with drying these heat-sensitive materials and examine the impact of various drying methods. Our thorough research extensively covers ten notable drying methods: heat pump drying, freeze-drying, spray drying, vacuum drying, fluidized bed drying, superheated steam drying, infrared drying, microwave drying, osmotic drying, vacuum drying, and supercritical fluid drying. Each method is tailored to address the requirements of specific functional foods and biopharmaceuticals and provides a comprehensive account of each technique's inherent advantages and potential limitations. Further, the review ventures into the exploration of combined hybrid drying techniques and smart drying technologies with industry 4.0 tools such as automation, AI, machine learning, IoT, and cyber-physical systems. These innovative methods are designed to enhance product performance and elevate the quality of the final product in the drying of functional foods and biopharmaceuticals. Through a thorough survey of the drying landscape, this review illuminates the intricacies of these operations and underscores their pivotal role in functional foods and biopharmaceutical production.
Collapse
Affiliation(s)
- Rani Puthukulangara Ramachandran
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600, Boulevard Casavant Ouest Saint-Hyacinthe, Québec J2S 8E3 Canada
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Mohammad Nadimi
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Stefan Cenkowski
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Jitendra Paliwal
- Department of Biosystems Engineering, University of Manitoba, E2-376, EITC, 75A Chancellor’s Circle, Winnipeg, MB, R3T 2N2 Canada
| |
Collapse
|
4
|
Mahmood N, Liu Y, Zheng X, Munir Z, Pandiselvam R, Zhang Y, Ali Saleemi M, Yves H, Sufyan M, Lei D. Influences of emerging drying technologies on rice quality. Food Res Int 2024; 184:114264. [PMID: 38609240 DOI: 10.1016/j.foodres.2024.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Rice is an important staple food in the world. Drying is an important step in the post-harvest handling of rice and can influence rice qualities and thus play a key role in determining rice commercial and nutritional value. In rice processing, traditional drying methods may lead to longer drying times, greater energy consumption, and unintended quality losses. Thus, it is imperative to improve the physical, chemical, and milling properties of rice while preserving its nutritional value, flavor, and appearance as much as possible. Additionally, it is necessary to increase the efficiency with which heat energy is utilized during the thermal processing of freshly harvested paddy. Moreover, this review provides insights into the current application status of six different innovative drying technologies such as radio frequency (RF) drying, microwave (MW) drying, infrared (IR) drying, vacuum drying (VD), superheated steam (SHS) drying, fluidized bed (FB) drying along with their effect on the quality of rice such as color, flavor, crack ratio, microstructure and morphology, bioactive components and antioxidant activity as well asstarch content and glycemic index. Dielectric methods of drying due to volumetric heating results in enhanced drying rate, improved heating uniformity, reduced crack ratio, increased head rice yield and better maintain taste value of paddy grains. These novel emerging drying techniques increased the interactions between hydrated proteins and swollen starch granules, resulting in enhanced viscosity of rice flour and promoted starch gelatinization and enhanced antioxidant activity which is helpful to produce functional rice. Moreover, this review not only highlights the existing challenges posed by these innovative thermal technologies but also presents potential solutions. Additionally, the combination of these technologies to optimize operating conditions can further boost their effectiveness in enhancing the drying process. Nevertheless, future studies are essential to gain a deeper understanding of the mechanism of quality changes induced by emerging processing technologies. This knowledge will help expand the application of these techniques in the rice processing industry.
Collapse
Affiliation(s)
- Naveed Mahmood
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xu Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zeeshan Munir
- Department of Agricultural Engineering, University of Kassel, Nordbahnhofstr. 1a, Witzenhausen 37213, Germany
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, 671124, Kerala, India
| | - Yue Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Mansab Ali Saleemi
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Harimana Yves
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Muhammad Sufyan
- College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Dengwen Lei
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
5
|
Xie L, Jiang YS, Wang YB, Xiao HW, Liu W, Ma Y, Zhao XY. Changes in the Physical Properties and Volatile Odor Characteristics of Shiitake Mushrooms ( Lentinula edodes) in Far Infrared Radiation Drying. Foods 2023; 12:3213. [PMID: 37685146 PMCID: PMC10486590 DOI: 10.3390/foods12173213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The effects of far infrared radiation drying (FID) on physical properties (drying kinetics, color, shrinkage ratio, rehydration ratio, and microstructural characterization) and volatile odor characteristics (volatile odor profile distinction and volatile compounds) of shiitake mushrooms were evaluated in this study. During the FID, the drying time decreased with the increase in drying temperature, and it had a less significant effect in the lower temperature range. The increase in drying temperature led to increasing shrinkage and collapse in the microstructure, resulting in a decreased rehydration rate and highlighting the influence of microstructure characteristics on macroscopic properties. Higher drying temperatures employed in the FID process were found to be associated with a decreasing L* value and an increasing ΔE value. The application of principal component analysis can effectively distinguish the significant effect of FID on the volatile odor profiles of shiitake mushrooms. Compared to raw shiitake mushrooms, FID treatment has endowed samples with a greater variety of volatile compounds. After processing with FID, there have been increases in volatile components such as sulfur compounds, acids, nitrogen compounds, and aldehydes, while volatile components like alcohols, ketones, and hydrocarbons have shown decreases.
Collapse
Affiliation(s)
- Long Xie
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; (L.X.)
| | - Yu-Si Jiang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Yu-Bin Wang
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China
| | - Wei Liu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; (L.X.)
| | - Yue Ma
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Xiao-Yan Zhao
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| |
Collapse
|