1
|
Guo KX, Hu B, Jiang Y, Li ZY, Qi J, Yu MM. Comprehensive insights into the mechanism of flavor formation in mandarin fish (Siniperca chuatsi) with inoculated fermentation. Food Chem 2025; 479:143717. [PMID: 40081068 DOI: 10.1016/j.foodchem.2025.143717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
The inoculated fermentation is an effective way to shorten fermentation time and improve the flavor quality in fermented food. Therefore, this work aims to analyze the difference between traditional and inoculated fermentation, and explore the mechanism of flavor formation in mandarin fish during fermentation. Results showed that a total of 67 volatile compounds were detected, and 13 key flavor compounds were identified in fermented mandarin fish. Inoculation promotes the oxidation and hydrolysis of fatty acids, thus forming more aldehydes and alcohols. Moreover, inoculated fermentation inhibited the growth of Enterococcus, Carnobacterium and Morganella, thereby reducing indole content. In addition, inoculation increased the taste activity values of Glu, Gly and Ala, which improved umami taste and sweet taste of fermented mandarin fish. In short, the mixed inoculation shortened the fermentation time from 12d to 8d, which improved the flavor quality of fermented mandarin fish.
Collapse
Affiliation(s)
- Ke-Xun Guo
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Hefei, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei, China
| | - Bin Hu
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Hefei, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei, China
| | - Yi Jiang
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Hefei, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei, China
| | - Zeng-Yong Li
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, China..
| | - Jun Qi
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Hefei, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei, China
| | - Man-Man Yu
- College of Food and Nutrition, Anhui Agricultural University, Hefei, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Hefei, China; Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei, China.
| |
Collapse
|
2
|
Pei Q, Guo B, Yue Y, Zhang X, Zhang S, Ji C, Ferrocino I, Cocolin L, Lin X. Exploring the synergistic effect of Lactiplantibacillus plantarum 1-24-LJ and lipase on improving Quality, Flavor, and safety of Suanzharou. Food Res Int 2025; 200:115432. [PMID: 39779089 DOI: 10.1016/j.foodres.2024.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The aim of this study was to investigate the effects of the addition of Lactiplantibacillus plantarum 1-24-LJ and lipase on physicochemical indexes, nutrition, and flavour substances during Suanzharou's fermentation. Individually, the lipase supplementation expedited the synthesis of organic acids and free fatty acids, thus rapidly acidifying the fermentation environment. Compared to C (8.03 ± 0.38 mg KOH/g of meat) and S (11.20 ± 0.85 mg KOH/g of meat), the addition of lipase caused a increase of acid value to 14.34 ± 0.12 mg KOH/g. Individually, Lpb. plantarum 1-24-LJ changed the bacterial community structure, hastening the formation of dominated flora, and accumulated more volatile flavor compounds. Artificial inoculation brought the abundance of Lpb. plantarum 1-24-LJ in S and LS to 87.35 % ∼ 89.47 % on the 7th day compared to C (45.97 %) and L (49.30 %). Lpb. plantarum 1-24-LJ was highly correlated with crucial flavor substances, especially for aldehydes and esters. Interestingly, lipase and Lpb. plantarum 1-24-LJ can not only serve their respective strengths, but also have a synergistic effect during fermentation. Lipase and Lpb. plantarum 1-24-LJ can cooperate to promote the accumulation of free amino acids content (4470.05 ± 0.43 mg/100 g), higher than those of other groups. Lpb. plantarum 1-24-LJ may accumulated more pleasant flavor compounds (such as aldehydes and esters) to neutralize negative flavor caused by lipase. In all, addition of Lpb. plantarum 1-24-LJ and addition of Lpb. plantarum 1-24-LJ with lipase are recommended to improve the quality of Suanzharou.
Collapse
Affiliation(s)
- Qixuan Pei
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Bingrui Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Ying Yue
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Xianhao Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Sufang Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Chaofan Ji
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Xinping Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China.
| |
Collapse
|
3
|
Shi J, Xiao N, Yin M, Ma J, Zhang Y, Liang Q, Jiang X, Li Y, Shi W. Comparison of non-volatile compounds of Penaeus vannemei with different drying treatments via multidimensional infrared spectroscopy. Food Chem 2024; 458:140233. [PMID: 38964093 DOI: 10.1016/j.foodchem.2024.140233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
To analyze the effect of various drying treatments (microwave drying (MD), hot air drying (HAD), vacuum drying (VD), and vacuum freeze drying (VFD)) on taste compounds in Penaeus vannamei, relevant indicators such as free amino acids, 5'-nucleotides, and organic acids were performed. Multidimensional infrared spectroscopy (MM-IR) results found that there were notable variations in taste properties of P. vannamei. There were 18 autocorrelation peaks in 3400-900 cm-1 were screened using second-derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR). Variations in functional groups were the major contributors to taste profiles. The TAV of glutamic acid (Glu), guanine (GMP), and inosinemonphosphate (IMP) were greater than one and had notable impacts on taste profiles. VD had the highest equivalent umami value, followed by VFD, HAD, and MD. This study may provide a theoretical guide for the production of dried P. vannamei products on an industrial scale.
Collapse
Affiliation(s)
- Jian Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jianrong Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yurui Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qianqian Liang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xin Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai 201306, China.
| |
Collapse
|
4
|
Yan ZF, Chen JY, Yang J, Yuan S, Qiao XY, Xu B, Su LQ. Enhancement of the flavor and functional characteristics of cod protein isolate using an enzyme-microbe system. Food Funct 2024; 15:10717-10731. [PMID: 39380384 DOI: 10.1039/d4fo02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cod protein isolate (CPI), a by-product of the cod processing industry, represents a novel source of high value-added products. However, off-flavors in cod protein such as bitterness and fishy odor reduce its acceptability to consumers. Here, CPI was first debittered using aminopeptidase from Streptomyces canus (ScAPase) and then deodorized through probiotic fermentation. This is the first reported demonstration of complete removal of the bitterness of CPI using ScAPase. Subsequently, Syn3 and Syn4, as aromatic CPI (ACPI), were prepared from debittered CPI (DCPI) via fermentation with Lactobacillus acidophilus and Bifidobacterium longum, respectively. These products, DCPI and ACPI, were characterized by the absence of bitterness and fishy odor, along with a strong aromatic scent and high overall acceptability. Additionally, these products exhibited improved physicochemical properties, including enhanced oil-holding capacity, emulsifying activity, and resistance to digestion, compared to untreated CPI. However, significant differences were observed in their radical scavenging activities. The highest scavenging activity was detected in Syn3 against DPPH˙ (63.5%) and ˙OH (79.2%), in DCPI against O2- (32.0%), and in post-digestion Syn4 against ABTS˙+ (95.2%). Furthermore, after digestion treatment, these products significantly promoted the proliferation of probiotics. Notably post-digestion Syn4 showed the most substantial proliferation effect on Lactobacillus reuteri, Lactobacillus rhamnosus, and Bifidobacterium breve compared to other post-digestion samples. These results indicate that the treated CPI has the potential for applications in health food products.
Collapse
Affiliation(s)
- Zheng-Fei Yan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jia-Yu Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Shuai Yuan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xue-Yi Qiao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Bo Xu
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Ling-Qia Su
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
5
|
Li H, Li G, Bi Y, Liu S. Fermented Fish Products: Balancing Tradition and Innovation for Improved Quality. Foods 2024; 13:2565. [PMID: 39200493 PMCID: PMC11353695 DOI: 10.3390/foods13162565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
The flavor profile of fermented fish products is influenced by the complex interplay of microbial and enzymatic actions on the raw materials. This review summarizes the various factors contributing to the unique taste and aroma of these traditional foods. Key ingredients include locally sourced fish species and a variety of spices and seasonings that enhance flavor while serving as cultural markers. Starter cultures also play a critical role in standardizing quality and accelerating fermentation. Flavor compounds in fermented fish are primarily derived from the metabolism of carbohydrates, lipids, and proteins, producing a diverse array of free amino acids, peptides, and volatile compounds such as aldehydes, ketones, alcohols, and esters. The fermentation process can be shortened by certain methods to reduce production time and costs, allowing for faster product turnover and increased profitability in the fermented fish market. Fermented fish products also show potent beneficial effects. This review highlights the importance of integrating traditional practices with modern scientific approaches. Future research directions to enhance the quality of fermented fish products are suggested.
Collapse
Affiliation(s)
- Hang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guantian Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yunchen Bi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China (Y.B.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
6
|
Mao J, Wang X, Chen H, Zhao Z, Liu D, Zhang Y, Nie X. The Contribution of Microorganisms to the Quality and Flavor Formation of Chinese Traditional Fermented Meat and Fish Products. Foods 2024; 13:608. [PMID: 38397585 PMCID: PMC10888149 DOI: 10.3390/foods13040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Guizhou sour meat and sour fish, Chaoshan fish sauce, Sichuan sausage and bacon, Cantonese sausage, Jinhua ham, and Xinjiang air-dried beef are eight representatives of Chinese traditional fermented meat and fish products (FMFPs), which are favored by Chinese consumers due to their high nutritional value and quality. The quality of the spontaneously fermented Chinese traditional FMFP is closely correlated with microorganisms. Moreover, the dominant microorganisms are significantly different due to regional differences. The effects of microorganisms on the texture, color, flavor, nutrition, functional properties, and safety of Chinese traditional FMFPs have not been not fully described. Additionally, metabolic pathways for flavor formation of Chinese traditional FMFPs have not well been summarized. This article describes the seven characteristic Chinese traditional FMFPs and correlated dominant microorganisms in different regions of China. The effects of microorganisms on the texture, color, and flavor of Chinese traditional FMFPs are discussed. Furthermore, the metabolic pathways of microbial regulation of flavor formation in Chinese traditional FMFPs are proposed. This work provides a theoretical basis for improvement of Chinese traditional FMFPs by inoculating functional microorganisms isolated from Chinese traditional fermented foods.
Collapse
Affiliation(s)
- Jingjing Mao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyi Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Hongfan Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
7
|
Meng L, Ma L, Xu J, Rong K, Peng N, Zhao S. Effect of enzyme-assisted fermentation on quality, safety, and microbial community of black soldier fly larvae (Hermetia illucens L.) as a novel protein source. Food Res Int 2023; 174:113624. [PMID: 37986475 DOI: 10.1016/j.foodres.2023.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Considering the significance and scarcity of quality protein, this study aims to obtain a novel safe protein source through fermenting the black soldier fly larvae (BSFL). Lactobacillus crispatus M1027 and Pichia kudriavzevii DHX19 were added as starters together with neutral protease for enzymolysis during fermentation. The results showed that the low pH value (from 6.60 to 3.99), generated by lactic acid accumulation, created an environment where the pathogen could hardly grow. During fermentation, the flavor compound ethyl acetate content reached up to 406.55 mg/L, and the melanization was effectively inhibited by the starters. The increase of trichloroacetic acid-soluble protein content (from 8.73 % to 17.96 %) contributed to improving the absorbability of product by animals after feeding. Notably, the contents of detrimental substances, including total volatile basic nitrogen and histamine, were both below specified limits after fermentation. Simultaneously, the malonic dialdehyde content remained stable during fermentation. Relative abundance of Lactobacillus and Pichia gradually increased and finally dominated in the culture during fermentation, accompanied by pathogens decline below detection limit (1.0 Log cfu/g). Moreover, there was a close relationship between the dynamics of physicochemical indices and microbial succession. Overall, our studies explored a new process to ferment the BSFL paste which would improve the quality and safety of fermented BSFL paste. This research provided theoretical support for fermented insect as a novel protein source.
Collapse
Affiliation(s)
- Leying Meng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liangxiao Ma
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China; Hubei Zhizheng Tianchen Biotechnology Co., Ltd, China
| | - Jiahui Xu
- Hubei Zhizheng Tianchen Biotechnology Co., Ltd, China
| | - Keming Rong
- Hubei Zhizheng Tianchen Biotechnology Co., Ltd, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
8
|
Wenkang H, Jingui L, Wei Z, Jiangli W, Zhengbin Y, Furong Z, Xuefeng Z. Multi-omics analysis reveals the microbial interactions of S. cerevisiae and L. plantarum on Suanyu, Chinese traditional fermented fish. Food Res Int 2023; 174:113525. [PMID: 37986426 DOI: 10.1016/j.foodres.2023.113525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/22/2023]
Abstract
S. cerevisiae and L. plantarum play important roles in Suanyu fermentation. This study investigated the interaction between S. cerevisiae and L. plantarum during fermentation and its impact on metabolic pathways. Co-culturing S. cerevisiae and L. plantarum increased pH to 5.72, reduced TVB-N to 9.47 mg/mL, and achieved high utilization rates of sugars (98.9%) and proteins (73.7%). During microbial interactions, S. cerevisiae and L. plantarum produced antibiotics, including phenyllactate and Gentamicin C1a, inhibiting the growth of each other. S. cerevisiae used S-adenosyl-l-methionine to counteract acid production of L. plantarum, establishing dominance in Suanyu fermentation. Microbial interactions influenced carbohydrate and energy metabolism pathways, such as nicotinate and nicotinamide metabolism and purine metabolism. S. cerevisiae significantly impacted gene expression in protein synthesis and cell growth pathways, including ribosome, SNARE interactions, basal transcription factors, and MAPK signaling. These findings offer insights into microbial interactions and metabolic processes during Suanyu fermentation.
Collapse
Affiliation(s)
- Hu Wenkang
- College of Life Sciences, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Liu Jingui
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Zhang Wei
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wu Jiangli
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Yang Zhengbin
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Zhang Furong
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China
| | - Zeng Xuefeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, China.
| |
Collapse
|
9
|
Liu J, Mai R, Liu P, Guo S, Yang J, Bai W. Flavor Formation in Dry-Cured Fish: Regulation by Microbial Communities and Endogenous Enzymes. Foods 2023; 12:3020. [PMID: 37628021 PMCID: PMC10453264 DOI: 10.3390/foods12163020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Dried salted fish is a traditional dry-cured fish that is sprinkled with salt before the curing process. With a unique flavor as well as diverse varieties, dry-cured fish is popular among consumers worldwide. The presence of various microbial communities during the curing process leads to numerous metabolic reactions, especially lipid oxidation and protein degradation, which influence the formation of flavor substances. However, during industrial curing, the quality of dry-cured fish is difficult to control, leading to the formation of products with diverse flavors. This review describes the curing process of dried salted fish, the key microorganisms involved in the curing process of typical dried salted fish products at home and abroad, and the correlation between biological metabolism and flavor formation and the underlying mechanism. This review also investigates the prospects of dried salted fish products, proposing methods for the analysis of improved curing processes and the mechanisms of dried salted fish. Through a comprehensive understanding of this review, modern production challenges can be addressed to achieve greater control of microbial growth in the system and improved product safety. In addition to advancing our understanding of the processes by which volatile flavor compounds are formed in conventional dry-cured fish products, we expect that this work will also offer a theoretical framework for enhancing their flavor in food processing.
Collapse
Affiliation(s)
- Jiayue Liu
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
| | - Ruijie Mai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
| | - Pingru Liu
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
| | - Siqi Guo
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
| | - Juan Yang
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Beijing 430062, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| | - Weidong Bai
- College of Light Industry and Food Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China; (J.L.); (R.M.); (P.L.); (S.G.); (W.B.)
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Beijing 430062, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510408, China
| |
Collapse
|