1
|
Zhao Y, Luo M, Jiang Q, Ma Y, Liu X, Bai X, Zhou L, Xie J. Metabolomic insights into Monascus-fermented rice products: Implications for monacolin K content and nutritional optimization. Food Sci Nutr 2024; 12:5587-5604. [PMID: 39139959 PMCID: PMC11317686 DOI: 10.1002/fsn3.4222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 08/15/2024] Open
Abstract
This study aims to elucidate the detailed metabolic implications of varying monacolin K levels and sterilization methods on Monascus-fermented rice products (MFRPs), acclaimed for their health benefits and monacolin K content. Advanced metabolite profiling of various MFRP variants was conducted using ultrahigh-performance liquid chromatography coupled with tandem time-of-flight mass spectrometry (UHPLC-Q-TOF MS). Statistical analysis encompassed t-tests, ANOVA, and multivariate techniques including PCA, PLS-DA, and OPLS-DA. Notable variations in metabolites were observed across MFRPs with differing monacolin K levels, particularly in variants such as MR1-S, MR1.5-S, MR2-S, and MR3-S. Among the 524 identified metabolites, significant shifts were noted in organic acids, derivatives, lipids, nucleosides, and organic oxygen compounds. The study also uncovered distinct metabolic changes resulting from different sterilization methods and the use of highland barley as a fermentation substitute for rice. Pathway analysis shed light on affected metabolic pathways, including those involved in longevity regulation, cGMP-PKG signaling, and the biosynthesis of unsaturated fatty acids. The research provides critical insights into the complex metabolic networks of MFRPs, underscoring the impact of fermentation substrates and conditions on monacolin K levels and their health implications. This study not only guides the nutritional optimization of MFRPs but also emphasizes the strategic importance of substrate choice and sterilization techniques in enhancing the nutritional and medicinal value of these functional foods.
Collapse
Affiliation(s)
- Yongxia Zhao
- Department of PharmacognosticsZunyi Medical UniversityZunyiChina
- Guizhou Yuanxi Biological R & D Co., Ltd.GuiyangChina
- Tibet Yuewang Medicine Diagnosis Ecological Tibetan Medicine Technology Co., Ltd.LashaChina
- School of Life SciencesGuizhou UniversityGuiyangChina
| | - Mingxia Luo
- Department of PharmacognosticsZunyi Medical UniversityZunyiChina
| | - Qin Jiang
- Department of PharmacognosticsZunyi Medical UniversityZunyiChina
| | - Yuhan Ma
- Department of PharmacognosticsZunyi Medical UniversityZunyiChina
| | - Xiaoqi Liu
- Department of PharmacognosticsZunyi Medical UniversityZunyiChina
| | - Xue Bai
- Guizhou Yuanxi Biological R & D Co., Ltd.GuiyangChina
| | - Lihong Zhou
- Tibet Yuewang Medicine Diagnosis Ecological Tibetan Medicine Technology Co., Ltd.LashaChina
- School of Life SciencesGuizhou UniversityGuiyangChina
| | - Jian Xie
- Department of Medical GeneticsZunyi Medical UniversityZunyiChina
| |
Collapse
|
2
|
Wang X, Hao Z, Liu N, Jin Y, Wang B, Bian Y, Yu Y, Wang T, Xiao Y, Yu Z, Zhou Y. Influence of the structure and physicochemical properties of OSA modified highland barley starch based on ball milling assisted treatment. Int J Biol Macromol 2024; 259:129243. [PMID: 38199535 DOI: 10.1016/j.ijbiomac.2024.129243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
This study aimed to investigate the influence of ball milling assisted treatment on the degree of substitution of octenyl succinic anhydride (OSA) modified highland barley starch (HBS) and on the physicochemical properties and structure of HBS. Scanning electron microscopy (SEM) findings showed that with the increasing of ball milling time, the surface morphology of OSA modified HBS became rougher and rougher and the particle morphology and crystal structure were damaged. When the pretreatment time of ball milling was 40 min, the degree of substitution of OSA modified HBS was 1.32 times higher than that of the conventional modification method. In addition, the longer the ball milling assistant, the longer the short-range ordering of the OSA modified HBS significantly decreased, and the relative crystallinity decreased (from 16.68 % to 7.93 %), leading to a decrease in thermal stability too. However, it greatly enhanced the aging resistance and flowability. In terms of emulsification properties, the emulsification properties of OSA modified HBS increased from 60.67 % to 75.67 %. Therefore, the HBS with better freeze-thaw stability and higher degree of substitution can be prepared by ball milling pretreatment and OSA modification, which provides technical support for further development of starch resources.
Collapse
Affiliation(s)
- Xin Wang
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Nini Liu
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yongqing Jin
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Baixue Wang
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiran Bian
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiyang Yu
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Taosuo Wang
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Food Processing Research Institute, Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Pycia K, Szpunar-Krok E, Szostek M, Pawlak R, Juszczak L. Selected Physicochemical, Thermal, and Rheological Properties of Barley Starch Depending on the Type of Soil and Fertilization with Ash from Biomass Combustion. Foods 2023; 13:49. [PMID: 38201077 PMCID: PMC10778105 DOI: 10.3390/foods13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The following study analyzed the impact of fertilizing barley with fly ash from biomass combustion grown on two types of soil, Haplic Luvisol (HL) and Gleyic Chernozem (GC), on the properties of starch. The experiment was conducted in 2019 (A) and 2020 (B), and barley was fertilized with ash doses (D1-D6) differing in mineral content. In the tested barley starch samples, the amylose content, the clarity of the paste, and the content of selected minerals were determined. The thermodynamic characteristics of gelatinization and retrogradation were determined using the DSC method. Pasting characteristics, flow curves, and viscoelastic properties of starch pastes were performed. Starches differed in amylose content and paste clarity. The highest gelatinization and retrogradation enthalpy (ΔHG and ΔHR) values were recorded for samples GCD1A and HLD5B. None of the tested factors significantly affected the pasting temperature (PT), but they had a significant impact on the remaining parameters of the pasting characteristics. The average PT value of barley starches was 90.9 °C. However, GCD2A starch had the highest maximum viscosity and the highest rheological stability during heating. GCD2A paste was characterized by the highest apparent viscosity. It was shown that all pastes showed non-Newtonian flow and shear-thinning and had a predominance of elastic features over viscous ones. The resulting gels had the characteristics of weak gels. Ash from burning wood biomass is an innovative alternative to mineral fertilizers. It was shown that the use of such soil fertilization influenced the properties of barley starch.
Collapse
Affiliation(s)
- Karolina Pycia
- Department of Food Technology and Human Nutrition, Institute of Food Technology, College of Natural Science, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland
| | - Ewa Szpunar-Krok
- Department of Plant Production, Institute of Agricultural Sciences, and Environmental Protection, College of Natural Science, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland;
| | - Małgorzata Szostek
- Department of Soil Science, Environmental Chemistry and Hydrology, College of Natural Sciences, University of Rzeszow, Zelwerowicza 8b St., 35-601 Rzeszow, Poland;
| | | | - Lesław Juszczak
- Department of Food Analysis and Evaluation of Food Quality, University of Agriculture in Krakow, Balicka 122, 30-149 Krakow, Poland;
| |
Collapse
|
4
|
Guo L, Chen H, Zhang Y, Yan S, Chen X, Gao X. Starch granules and their size distribution in wheat: Biosynthesis, physicochemical properties and their effect on flour-based food systems. Comput Struct Biotechnol J 2023; 21:4172-4186. [PMID: 37675285 PMCID: PMC10477758 DOI: 10.1016/j.csbj.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Starch is a vital component of wheat grain and flour, characterized by two distinct granule types: A-type starch (AS) with granules larger than 10 µm in diameter, and B-type starch (BS) with granules measuring no more than 10 µm in diameter. This review comprehensively evaluates the isolation, purification, and biosynthesis processes of these types of granules. In addition, a comparative analysis of the structure and properties of AS and BS is presented, encompassing chemical composition, molecular, crystalline and morphological structures, gelatinization, pasting and digestive properties. The variation in size distribution of granules leads to differences in physicochemical properties of starch, influencing the formation of polymeric proteins, secondary and micro-structures of gluten, chemical and physical interactions between gluten and starch, and water absorption and water status in dough system. Thus, starch size distribution affects the quality of dough and final products. In this review, we summarize the up-to-date knowledge of AS and BS, and propose the possible strategies to enhance wheat yield and quality through coordinated breeding efforts. This review serves as a valuable reference for future advancements in wheat breeding.
Collapse
Affiliation(s)
- Lei Guo
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Heng Chen
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Yan
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xueyan Chen
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
| | - Xin Gao
- Shandong Academy of Agricultural Sciences / National Engineering Research Center of Wheat and Maize/ Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture / Shandong Provincial Technology Innovation Center for Wheat, Jinan, Shandong 250100, China
| |
Collapse
|
5
|
Park J, Park HY, Chung HJ, Oh SK. Starch Structure of Raw Materials with Different Amylose Contents and the Brewing Quality Characteristics of Korean Rice Beer. Foods 2023; 12:2544. [PMID: 37444283 DOI: 10.3390/foods12132544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to explore suitable processing materials for rice beer (RB) production by analyzing the starch structure of the raw materials utilized for brewing beer and the quality characteristics of RB. We used malt, employing the Heugho cultivar as the main ingredient, and produced beer containing 30% rice. The regular amylose-containing cultivars Samgwang (SA) and Hangaru (HA) and the high-amylose-containing cultivar Dodamssal (DO) were used as adjuncts. Distribution of the short molecular chains of the starch amylopectin was the highest for SA and malt at 29.3% and 27.1%, respectively. Glucose content was the highest in the wort prepared with 100% malt and 30% SA + 70% malt. The alcohol content in SA RB and HA RB was higher than that in beer prepared with 100% malt. DO RB had the least bitterness and volatile components, such as acetaldehyde and ethyl acetate. The three rice cultivars tested in this study are suitable as starch adjuncts for RB production. The characteristics of RBs varied depending on the molecular structure of the ingredients, irrespective of their amylose contents. SA could be considered a craft beer with quality characteristics and rich flavor components, similar to 100% malt beer, compared to other RBs.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Suwon 16429, Republic of Korea
| | - Hye Young Park
- Department of Central Area Crop Science, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Suwon 16429, Republic of Korea
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sea-Kwan Oh
- National Institute of Crop Science (NICS), Rural Development Administration (RDA), Chuncheon 24219, Republic of Korea
| |
Collapse
|