1
|
Bartholomew HP, Gottschalk C, Cooper B, Bukowski MR, Yang R, Gaskins VL, Luciano-Rosario D, Fonseca JM, Jurick WM. Omics-Based Comparison of Fungal Virulence Genes, Biosynthetic Gene Clusters, and Small Molecules in Penicillium expansum and Penicillium chrysogenum. J Fungi (Basel) 2024; 11:14. [PMID: 39852433 PMCID: PMC11766614 DOI: 10.3390/jof11010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Penicillium expansum is a ubiquitous pathogenic fungus that causes blue mold decay of apple fruit postharvest, and another member of the genus, Penicillium chrysogenum, is a well-studied saprophyte valued for antibiotic and small molecule production. While these two fungi have been investigated individually, a recent discovery revealed that P. chrysogenum can block P. expansum-mediated decay of apple fruit. To shed light on this observation, we conducted a comparative genomic, transcriptomic, and metabolomic study of two P. chrysogenum (404 and 413) and two P. expansum (Pe21 and R19) isolates. Global transcriptional and metabolomic outputs were disparate between the species, nearly identical for P. chrysogenum isolates, and different between P. expansum isolates. Further, the two P. chrysogenum genomes revealed secondary metabolite gene clusters that varied widely from P. expansum. This included the absence of an intact patulin gene cluster in P. chrysogenum, which corroborates the metabolomic data regarding its inability to produce patulin. Additionally, a core subset of P. expansum virulence gene homologues were identified in P. chrysogenum and were similarly transcriptionally regulated in vitro. Molecules with varying biological activities, and phytohormone-like compounds were detected for the first time in P. expansum while antibiotics like penicillin G and other biologically active molecules were discovered in P. chrysogenum culture supernatants. Our findings provide a solid omics-based foundation of small molecule production in these two fungal species with implications in postharvest context and expand the current knowledge of the Penicillium-derived chemical repertoire for broader fundamental and practical applications.
Collapse
Affiliation(s)
- Holly P. Bartholomew
- Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
- Invasive Insect Biocontrol and Behavior Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Christopher Gottschalk
- Innovative Fruit Production, Improvement, and Protection, Appalachian Fruit Research Station, U.S. Department of Agriculture, Agricultural Research Service, Kearneysville, WV 25430, USA
| | - Bret Cooper
- Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Michael R. Bukowski
- Methods and Application of Food Composition Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA
| | - Ronghui Yang
- Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Verneta L. Gaskins
- Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Dianiris Luciano-Rosario
- Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Jorge M. Fonseca
- Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Wayne M. Jurick
- Food Quality Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| |
Collapse
|
2
|
Shestakova A, Fatkulin A, Surkova D, Osmolovskiy A, Popova E. First Insight into the Degradome of Aspergillus ochraceus: Novel Secreted Peptidases and Their Inhibitors. Int J Mol Sci 2024; 25:7121. [PMID: 39000228 PMCID: PMC11241649 DOI: 10.3390/ijms25137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Aspergillus fungi constitute a pivotal element within ecosystems, serving as both contributors of biologically active compounds and harboring the potential to cause various diseases across living organisms. The organism's proteolytic enzyme complex, termed the degradome, acts as an intermediary in its dynamic interaction with the surrounding environment. Using techniques such as genome and transcriptome sequencing, alongside protein prediction methodologies, we identified putative extracellular peptidases within Aspergillus ochraceus VKM-F4104D. Following manual annotation procedures, a total of 11 aspartic, 2 cysteine, 2 glutamic, 21 serine, 1 threonine, and 21 metallopeptidases were attributed to the extracellular degradome of A. ochraceus VKM-F4104D. Among them are enzymes with promising applications in biotechnology, potential targets and agents for antifungal therapy, and microbial antagonism factors. Thus, additional functionalities of the extracellular degradome, extending beyond mere protein substrate digestion for nutritional purposes, were demonstrated.
Collapse
Affiliation(s)
- Anna Shestakova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | - Artem Fatkulin
- Laboratory of Molecular Physiology, HSE University, Moscow 101000, Russia
| | - Daria Surkova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | | | - Elizaveta Popova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| |
Collapse
|
3
|
Tu T, Ren Y, Gong W, Huang J, Zhu C, Salah M, Zhao L, Xia X, Wang Y. Endoglucanase H from Aspergillus westerdijkiae Plays an Important Role in the Virulence on Pear Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8415-8422. [PMID: 38573226 DOI: 10.1021/acs.jafc.3c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Aspergillus westerdijkiae can infect many agricultural products including cereals, grapes, and pear. Pathogenic fungi secrete diverse effectors as invasive weapons for successful invasion the host plant. During the pathogen-host interaction, 4486 differentially expressed genes were observed in A. westerdijkiae with 2773 up-regulated and 1713 down-regulated, whereas 8456 differentially expressed genes were detected in pear fruits with 4777 up-regulated and 3679 down-regulated. A total of 309 effector candidate genes were identified from the up-regulated genes in A. westerdijkiae. Endoglucanase H (AwEGH) was significantly induced during the pathogen-host interaction. Deletion of AwEGH resulted in altered fungal growth and morphology and reduced conidia production and germination compared to the wild-type. Further experiments demonstrated that AwEGH plays a role in cell wall integrity. Importantly, disruption of AwEGH significantly reduced the fungal virulence on pear fruits, and this defect can be partly explained by the impaired ability of A. westerdijkiae to penetrate host plants.
Collapse
Affiliation(s)
- Tingting Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Weifeng Gong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juanying Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenyang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mahmoud Salah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Environmental Agricultural Science, Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo 11566, Egypt
| | - Luning Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoshuang Xia
- Center of Analysis, Jiangsu University, Zhenjiang 212013, China
| | - Yun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
de Ramón-Carbonell M, Sánchez-Torres P. Wide transcriptional outlook to uncover Penicillium expansum genes underlying fungal incompatible infection. Heliyon 2024; 10:e29124. [PMID: 38623190 PMCID: PMC11016614 DOI: 10.1016/j.heliyon.2024.e29124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pathogenesis of P. expansum involved different processes and one of them is the recognition between pathogen-host, which in the case of P. expansum is preferably pome fruit. In this work, the possible mechanisms connected to host recognition are addressed through the generation of a subtractive library carried out during the incompatible P. expansum-orange interaction in the initial stages of infection. The generated library was analyzed by massive sequencing and bioinformatic analysis. Of the identified genes, a total of 24 were selected for subsequent expression analysis by RT-qPCR in two incompatible interaction situations. The characterization of the overexpressed genes revealed the presence of CWDEs, ATPases, aldolases, detoxifying enzymes and virulent determinants that could act as effectors related to fungal virulence independently of the host. However, several identified genes, which could not be associated with the virulence of P. expansum under compatible conditions, were related to enzymes to obtain the nutrients necessary for the growth and development of the pathogen under stress conditions through basal metabolism that contributes to expand the range of adaptation of the pathogen to the environment and different hosts.
Collapse
Affiliation(s)
- Marta de Ramón-Carbonell
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, 46113, Moncada, Valencia, Spain
| | - Paloma Sánchez-Torres
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, 46113, Moncada, Valencia, Spain
- Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino Benlloch 7, 46980, Paterna, Valencia, Spain
| |
Collapse
|
5
|
Lai T, Yu Q, Pan J, Wang J, Tang Z, Bai X, Shi L, Zhou T. The Identification and Comparative Analysis of Non-Coding RNAs in Spores and Mycelia of Penicillium expansum. J Fungi (Basel) 2023; 9:999. [PMID: 37888255 PMCID: PMC10607695 DOI: 10.3390/jof9100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Penicillium expansum is the most popular post-harvest pathogen and causes blue mold disease in pome fruit and leads to significant economic losses worldwide every year. However, the fundamental regulation mechanisms of growth in P. expansum are unclear. Recently, non-coding RNAs (ncRNAs) have attracted more attention due to critical roles in normalizing gene expression and maintaining cellular genotypes in organisms. However, the research related to ncRNAs in P. expansum have not been reported. Therefore, to provide an overview of ncRNAs on composition, distribution, expression changes, and potential targets in the growth process, a comparative transcriptomic analysis was performed on spores and mycelia of P. expansum in the present study. A total of 2595 novel mRNAs, 3362 long non-coding RNAs (lncRNAs), 10 novel microRNAs (miRNAs), 86 novel small interfering RNAs (siRNAs), and 11,238 circular RNAs (circRNAs) were predicted and quantified. Of these, 1482 novel mRNAs, 5987 known mRNAs, 2047 lncRNAs, 40 miRNAs, 38 novel siRNAs, and 9235 circRNAs were differentially expressed (DE) in response to the different development stages. Afterward, the involved functions and pathways of DE RNAs were revealed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database enrichment analysis. The interaction networks between mRNAs, lncRNAs, and miRNAs were also predicted based on their correlation coefficient of expression profiles. Among them, it was found that miR168 family members may play important roles in fungal growth due to their central location in the network. These findings will contribute to a better understanding on regulation machinery at the RNA level on fungal growth and provide a theoretical basis to develop novel control strategies against P. expansum.
Collapse
Affiliation(s)
- Tongfei Lai
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Qinru Yu
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Jingjing Pan
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Jingjing Wang
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Zhenxing Tang
- School of Culinary Arts, Tourism College of Zhejiang, Hangzhou 311231, China;
| | - Xuelian Bai
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Lue Shi
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| | - Ting Zhou
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China; (T.L.); (Q.Y.); (J.P.); (J.W.); (X.B.); (L.S.)
| |
Collapse
|