1
|
Idyryshev B, Muratbayev A, Tashybayeva M, Spanova A, Amirkhanov S, Serikova A, Serikov Z, Bakirova L, Jumazhanova M, Bepeyeva A. Development and Characterization of Emulsion Gels with Pine Nut Oil, Inulin, and Whey Proteins for Reduced-Fat Meat Products. Foods 2025; 14:962. [PMID: 40231973 PMCID: PMC11941322 DOI: 10.3390/foods14060962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 04/16/2025] Open
Abstract
An emulsion gel was developed to replace animal fats in meat products while preserving desirable sensory and structural attributes. The gel was prepared by emulsifying pine nut oil and sunflower oil with whey protein concentrate (WPC) and polysaccharides (inulin and carrageenan). Process parameters, including the inulin-to-water ratio, homogenization speed, and temperature, were optimized to achieve stable gels exhibiting high water- and fat-binding capacities. Scanning electron micrographs revealed a cohesive network containing uniformly dispersed lipid droplets, with carrageenan promoting a denser matrix. Chemical assessments demonstrated a notably lower saturated fatty acid content (10.85%) and only 0.179% trans-isomers, alongside an elevated proportion (71.17%) of polyunsaturated fatty acids. This fatty acid profile suggests potential cardiovascular health benefits compared with conventional animal fats. Texture analyses showed that carrageenan increased gel strength and hardness; Experiment 4 recorded values of 15.87 N and 279.62 N, respectively. Incorporation of WPC at moderate levels (3-4%) further enhanced the yield stress, reflecting a robust protein-polysaccharide network. These findings indicate that the developed emulsion gel offers a viable alternative to animal fats in meat products, combining superior nutritional attributes with acceptable textural properties. The substantial polyunsaturated fatty acid content and minimal trans-isomers, coupled with the gel's mechanical stability, support the feasibility of creating reduced-fat, functional formulations that align with consumer demands for healthier alternatives.
Collapse
Affiliation(s)
| | - Alibek Muratbayev
- Department of “Food Technologies”, Shakarim University, 20A Glinki Street, Semey 071412, Kazakhstan; (B.I.); (M.T.); (A.S.); (S.A.); (A.S.); (Z.S.); (L.B.); (M.J.); (A.B.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
de Carvalho MD, Fazani Cavallieri ÂL, Kawazoe Sato AC. Plant proteins in structuring gelled emulsions for saturated fat substitutes: Challenges and opportunities. Food Res Int 2025; 202:115753. [PMID: 39967069 DOI: 10.1016/j.foodres.2025.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
Gelled emulsions are promising alternatives to saturated fats, offering the ability to mimic the solid-like behavior of fat while incorporating healthier oils. Polysaccharides and proteins, known for their emulsifying and gelling properties, are commonly used in such systems. Recently, plant proteins have gained increasing attention due to the growing demand for alternative proteins and the rise of flexitarian and vegetarian diets. This review explores the use of plant proteins to structure gelled emulsions as potential substitutes for saturated fats, highlighting the challenges and opportunities of this approach. Physical treatments such as heating, sonication, and high pressure have been used to enhance the functional properties of plant proteins, improving their performance as gelling and emulsifying agents. These treatments have resulted in gelled emulsions with improved properties, such as higher G', increased yield stress, lower tan δ, and improved water absorption. Additionally, applying these physical treatments during emulsification has been shown to enhance system interactions. Incorporating polysaccharides into the protein network can result in a segregative or aggregative relation, potentially leading to a stiffer microstructure. Recent studies demonstrated that the combination of biopolymers resulted in structures with texture characteristics similar to those of fat, such as hardness, chewiness, and lubricity. Finding new correlations between structural properties and sensory aspects through tribological, rheological, and fundamental texture analyses could provide valuable information on the sensory perception of fat.
Collapse
Affiliation(s)
- Matheus Dias de Carvalho
- School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Cidade Universitária, Campinas, SP, Brazil.
| | | | - Ana Carla Kawazoe Sato
- School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, Cidade Universitária, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Paschoa JLF, Ávila PF, da Costa GF, Ribeiro APB, Grimaldi R, da Cunha RL, Pollonio MAR, Goldbeck R. Application of Xylo-Oligosaccharide-Rich Gel Emulsion as a Fat Replacer in Sausages. Foods 2024; 13:3625. [PMID: 39594041 PMCID: PMC11593327 DOI: 10.3390/foods13223625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Xylo-oligosaccharides (XOS) are functional oligosaccharides obtained from xylan present in lignocellulosic material. This study investigated the effects of replacing pork fat with functional xylo-oligosaccharide gel emulsion (XGE) on the chemical and physical structure of developed meat products. The product's centesimal composition, energy value, pH, color parameters, and microstructure were analyzed. The results showed that replacing pork fat with XGE reduced the total lipid content by approximately 30%, and provided a desirable lipidic profile with reduced thrombogenicity and atherogenicity indices. A microstructure analysis showed that products with partial and full pork fat replacement presented a more compact structure than the control formulation. Thus, XGE is a viable alternative to replace pork fat in meat products since it maintains similar physicochemical and technological properties to the original products and contributes to the development of healthier meat products with prebiotic properties, lower fat content, and, consequently, lower energetic value.
Collapse
Affiliation(s)
- João L. F. Paschoa
- Laboratory of Bioprocess and Metabolic Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.L.F.P.)
| | - Patrícia F. Ávila
- Laboratory of Bioprocess and Metabolic Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.L.F.P.)
| | - Gilmar F. da Costa
- Meat and Process Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (G.F.d.C.); (M.A.R.P.)
| | - Ana Paula B. Ribeiro
- Oils and Fats Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (A.P.B.R.); (R.G.)
| | - Renato Grimaldi
- Oils and Fats Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (A.P.B.R.); (R.G.)
| | - Rosiane L. da Cunha
- Process Engineering Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | - Marise A. R. Pollonio
- Meat and Process Laboratory, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (G.F.d.C.); (M.A.R.P.)
| | - Rosana Goldbeck
- Laboratory of Bioprocess and Metabolic Engineering, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (J.L.F.P.)
| |
Collapse
|
4
|
Serdaroğlu M, Yüncü‐Boyacı Ö, Kavuşan HS. Utilizing chia flour-based gelled emulsion for the development of functional beef patties with enhanced nutritional profile. Food Sci Nutr 2024; 12:7316-7330. [PMID: 39479623 PMCID: PMC11521712 DOI: 10.1002/fsn3.4350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 11/02/2024] Open
Abstract
This study evaluated chia flour, egg white powder, and peanut oil gelled emulsion (GE) as a fat replacer in beef patties. Four formulations were prepared, replacing beef fat with different levels of gelled emulsion: 0% (C), 50% (G50), 75% (G75), and 100% (G100). The beef patties with GE showed improved nutritional properties, technological parameters, and cooking characteristics. A remarkable reduction in SFAs was achieved with the substitution of beef fat by the GE, with reductions of 33.71%, 46.64%, and 72.04% for 50%, 75%, and 100% substitution levels, respectively. AI and TI indices decreased, indicating healthier profiles. Reformulated samples exhibited lower hardness, gumminess, and chewiness values. Color and appearance were similar to the control, with higher sensory scores for G75 and G100. GE impacted color parameters, increasing L* and b* values. The utilization of GE effectively minimized voids in the beef patty structure, leading to improved cooking yield and a more compact structure. GE influenced oxidative stability, with average onset temperatures of 126.33°C (50% GE), 140.58°C (75% GE), and 127.04°C (100% GE). In conclusion, gelled emulsions could successfully contribute to producing healthier meat products.
Collapse
Affiliation(s)
- Meltem Serdaroğlu
- Food Engineering Department, Engineering FacultyEge UniversityBornovaIzmirTurkey
| | - Özlem Yüncü‐Boyacı
- Food Engineering Department, Engineering FacultyEge UniversityBornovaIzmirTurkey
| | - Hülya Serpil Kavuşan
- Food Engineering Department, Engineering FacultyEge UniversityBornovaIzmirTurkey
| |
Collapse
|
5
|
Cîrstea (Lazăr) N, Nour V, Corbu AR, Codină GG. Blackcurrant Pomace Extract as a Natural Antioxidant in Vienna Sausages Reformulated by Replacement of Pork Backfat with Emulsion Gels Based on High Oleic Sunflower and Flaxseed Oils. Gels 2024; 10:534. [PMID: 39195063 PMCID: PMC11487386 DOI: 10.3390/gels10080534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
The incorporation of a blackcurrant pomace extract (BPE) at 2.5%, 5.0% and 10.0% into an emulsion gel based on high oleic sunflower and linseed oils was examined in order to obtain a functional ingredient to be used as a pork backfat replacer in Vienna sausages. The replacement of the pork backfat with the control emulsion gel reduced the cooking loss but negatively affected the color by decreasing L* and a* values as compared with the traditional product. A decrease in the n-6/n-3 ratio from 10.99 to around 1.54 (by 7 times) was achieved through reformulation, while the PUFA/SFA ratio increased from 0.49 to 1.09. The incorporation of BPE did not have a major impact on the fatty acid profile and improved color by increasing redness, but negatively affected the texture by increasing hardness, gumminess and share force as compared with the sausages reformulated without extract. BPE reduced the pH and the thermal stability of the emulsion gels, increased cooking loss and decreased moisture retention in sausages. BPE increased the oxidative stability of Vienna sausages enriched in polyunsaturated fatty acids; however, the incorporation of BPE into the emulsion gels above 5% affected the sensory scores for appearance, texture and general acceptability of the reformulated sausages.
Collapse
Affiliation(s)
- Nicoleta Cîrstea (Lazăr)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Violeta Nour
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | | |
Collapse
|
6
|
Jaworska D, Sadowka A. Strategies to Improve the Functional Value of Meat and Meat Products. Foods 2024; 13:2433. [PMID: 39123623 PMCID: PMC11311435 DOI: 10.3390/foods13152433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Meat is a necessary component of the human diet because of its unique chemical composition, nutritional value, and complete protein content with favourable proportions of amino acids [...].
Collapse
Affiliation(s)
- Danuta Jaworska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159 C Str., 02-776 Warsaw, Poland;
| | | |
Collapse
|
7
|
Wei L, Ren Y, Huang L, Ye X, Li H, Li J, Cao J, Liu X. Quality, Thermo-Rheology, and Microstructure Characteristics of Cubic Fat Substituted Pork Patties with Composite Emulsion Gel Composed of Konjac Glucomannan and Soy Protein Isolate. Gels 2024; 10:111. [PMID: 38391441 PMCID: PMC10888161 DOI: 10.3390/gels10020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Composite emulsion gel can effectively mimic animal adipose tissue. In this study, composite emulsion gels composed of soy protein isolates and konjac glucomannan (KGM) were prepared as plant-based cubic fat substitutes (CFS). The effects of CFS on the quality and structure of pork patties were investigated in terms of the proximate composition, lipid oxidation stability, technological characteristics, color, sensory attributes, texture, thermo-rheological behavior, and microstructure. CFS samples composed of various ratios of KGM were added to lean meat patties to ascertain the optimal CFS composition for its potential replacement of pork back fat in patties. The addition of CFS containing 7.0% KGM was found to decrease the hardness of the lean meat patties by 71.98% while simultaneously improving their sensory quality. The replacement of pork back fat with CFS also reduced the fat content of the patties to as little as 3.65%. Furthermore, the addition of CFS enhanced the technological characteristics, lipid oxidation stability, and surface color of the fat-replaced patties, with no significant impact on their overall acceptability. The gel network of the patties was shown to be fine and remained compact as the fat replacement ratio increased to 75%, while the texture parameters, storage modulus, and fractal dimension all increased. Quality and structure improvements may allow the composite emulsion gels to replace fat in pork patties to support a healthy diet. This study may be beneficial for the application and development of plant-based cubic fat substitutes.
Collapse
Affiliation(s)
- Lai Wei
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yuqing Ren
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Lu Huang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xinnan Ye
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green and Low-Carbon Pocessing Technology for Plant-Based Food of China National Light Industry Council, Beijing Technology and Business University, Beijing 100048, China
| | - Jinnuo Cao
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan 056000, China
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Cîrstea (Lazăr) N, Nour V, Corbu AR, Codină GG. Efficacy of Chitosan, Pectin and Xanthan as Cold Gelling Agents in Emulsion Gels Stabilized with Legume Proteins to Be Used as Pork Backfat Replacers in Beef Burgers. Gels 2023; 9:970. [PMID: 38131956 PMCID: PMC10742780 DOI: 10.3390/gels9120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
This study aimed to develop stable emulsion gels enriched in polyunsaturated fatty acids, formulated with a mixture of olive (75%) and linseed (25%) oils, by incorporating two different stabilizers-pea and soy protein isolates-and three different cold gelling agents-chitosan, pectin and xanthan-to be used as pork backfat replacers in beef burgers. The color, pH, stability and textural properties of the emulsion gels were analyzed as affected by cold storage (4 °C, 7 days). Proximate composition, fatty acid content, technological and sensory properties were determined after burger processing. Meanwhile, color, pH, textural parameters and lipid oxidation were monitored in burgers at 0, 5 and 10 days of storage at 4 °C. A reduction of the fat content between 21.49% and 39.26% was achieved in the reformulated burgers as compared with the control, while the n-6/n-3 polyunsaturated fatty acid ratio decreased from 5.11 to 0.62. The highest moisture and fat retention were found in reformulated burgers made with xanthan, both with pea and soy proteins; however, their textural properties were negatively affected. The reformulated burgers made with chitosan were rated highest for sensory attributes and overall acceptability, not significantly different from the controls.
Collapse
Affiliation(s)
- Nicoleta Cîrstea (Lazăr)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
| | - Violeta Nour
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | - Alexandru Radu Corbu
- Department of Horticulture & Food Science, University of Craiova, 13 AI Cuza Street, 200585 Craiova, Romania;
| | | |
Collapse
|
9
|
Li S, Chen J, Liu Y, Qiu H, Gao W, Che K, Zhou B, Liu R, Hu W. Preparation of Citral Oleogel and Antimicrobial Properties. Gels 2023; 9:930. [PMID: 38131916 PMCID: PMC10742588 DOI: 10.3390/gels9120930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The objective of this study was to analyze a natural and safe oleogel with antimicrobial properties that can replace animal fats while lengthening the product's shelf life. The oleogel was created using direct dispersion (MG-SO), and its material characterization exhibited the exceptional performance of the hybrid gelant. Additionally, citral was integrated into the oil gel to prepare the citral oleogel (MG-SO). The antimicrobial nature of the material was examined and the findings revealed that it inhibited the growth of various experimental model bacteria, including Escherichia coli, Staphylococcus aureus, Aspergillus niger, Botrytis cinerea, and Rhizopus stolonifer. In addition, the material had a comparable inhibitory impact on airborne microorganisms. Lastly, MG-SON was utilized in plant-based meat patties and demonstrated an ability to significantly reduce the growth rate of microorganisms.
Collapse
Affiliation(s)
- Shangjian Li
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130015, China
| | - Jiajia Chen
- Zhuhai Lizhu Microsphere Technology Co., Zhuhai 519000, China
| | - Yuntong Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130015, China
| | - Honghao Qiu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130015, China
| | - Wei Gao
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130015, China
| | - Kundian Che
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130015, China
| | - Baogang Zhou
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130015, China
| | - Ran Liu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Jilin University, Changchun 130015, China
| | - Wenzhong Hu
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai 519041, China
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
10
|
Domínguez R, Dos Santos BA, Pateiro M, Munekata PES, Campagnol PCB, Lorenzo JM. Elevating meat products: Unleashing novel gel techniques for enhancing lipid profiles. Meat Sci 2023; 204:109277. [PMID: 37454480 DOI: 10.1016/j.meatsci.2023.109277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Rising health concerns and the diet-health link drive demand for healthier foods, prompting meat manufacturers to reformulate traditional products. These manufacturers have reduced fat content to enhance nutritional quality, which is essential for maintaining desired product features. As a result, numerous strategies have emerged over recent decades to decrease fat and enhance the lipid profiles of meat products. Among these strategies, using hydrocolloids, emulsification, encapsulation, or gelation of oils to produce fat substitutes stands out. Using gels allows fat replacers with characteristics similar to animal fat (similar rheological, physical, or appearance properties) but with a much healthier lipid profile (by incorporating highly unsaturated oils). Therefore, this manuscript aims to comprehensively describe the main fat replacers used to prepare meat products. In addition, an in-depth review of the latest studies (2022-2023) that use novel gels to reform meat products has been made, indicating in each case the implications that the reformulation produces at a physicochemical, nutritional, and sensory level. Given the reported results, it seems clear that the strategy of using bigels or emulgels is very promising and allows obtaining nutritionally highly improved meat products without affecting their sensory or physicochemical properties. However, the best conditions to obtain a novel gel suitable for use as a fat substitute for each meat product still need to be studied and correctly defined. Moreover, these advancements can pave the way for more extensive studies on using novel gel techniques in other food industries, expanding their applicability and leading to healthier consumer options across various food categories.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | | | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | | | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| |
Collapse
|
11
|
Cîrstea (Lazăr) N, Nour V, Corbu AR, Muntean C, Codină GG. Reformulation of Bologna Sausage by Total Pork Backfat Replacement with an Emulsion Gel Based on Olive, Walnut, and Chia Oils, and Stabilized with Chitosan. Foods 2023; 12:3455. [PMID: 37761164 PMCID: PMC10529321 DOI: 10.3390/foods12183455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Bologna sausage, also called "la grassa", is a very popular meat product despite its high fat content and lipidic profile raising serious negative health concerns. An emulsion gel containing olive, walnut, and chia oils, stabilized with soy protein isolate, transglutaminase, and chitosan, was used as total pork backfat replacer in Bologna sausage. The nutritional, textural, and technological properties were assessed and sensory analyses were conducted. Color, pH, and lipid oxidation were monitored during 18 days of cold storage (4 °C). A normal fat Bologna sausage was used as a control reference. A decrease in the n-6/n-3 ratio from 16.85 to 1.86 (by 9 times) was achieved in the reformulated product as compared with the control, while the PUFA/SFA ratio increased from 0.57 to 1.61. Color measurements indicated that the lightness and yellowness increased while redness slightly decreased in the reformulated product. The total substitution of pork backfat in Bologna sausage by the emulsion gel developed in the present study was realized without significantly affecting the technological properties, the oxidative stability and the overall acceptance by the consumers.
Collapse
Affiliation(s)
- Nicoleta Cîrstea (Lazăr)
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, Domnească Street 111, 800201 Galati, Romania;
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Violeta Nour
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Alexandru Radu Corbu
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | - Camelia Muntean
- Department of Horticulture and Food Science, University of Craiova, A.I. Cuza Street 13, 200585 Craiova, Romania; (A.R.C.); (C.M.)
| | | |
Collapse
|
12
|
Badar IH, Li Y, Liu H, Chen Q, Liu Q, Kong B. Effect of vegetable oil hydrogel emulsion as a fat substitute on the physicochemical properties, fatty acid profile, and color stability of modified atmospheric packaged buffalo burgers. Meat Sci 2023; 199:109143. [PMID: 36827828 DOI: 10.1016/j.meatsci.2023.109143] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/04/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Buffalo burgers were prepared with 50% or 100% buffalo backfat substitution using walnut, and peanut oil emulsion gels (EGs) blended with chia flour. Burgers were stored at 2 °C in modified atmosphere packaging for 12 days. The fat replacement decreased total fat by 26% and increased ash by 34%. Hardness and chewiness decreased with increasing the fat replacement; however, it did not affect springiness and cohesiveness values. Burger reformulations led to an increase in cooking yield (10%). Walnut oil EGs increased PUFA level up to 458%. Both oils enhanced PUFA/SFA and ω-6/ω-3 ratios and atherogenic and thrombogenic indices. Concerning color attribute, about 66% reduction was observed in redness values during the storage period of 12 days. Moreover, the sensory scores for all attributes, i.e., appearance, odor, flavor, and juiciness, were in the acceptable range of five or above in the reformulated burgers. In conclusion, 50% fat substitution using walnut and peanut oil EGs improved the nutritional profile of buffalo burgers without compromising the technological and sensory characteristics.
Collapse
Affiliation(s)
- Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Yuexin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
13
|
Mazumder MAR, Sujintonniti N, Chaum P, Ketnawa S, Rawdkuen S. Developments of Plant-Based Emulsion-Type Sausage by Using Grey Oyster Mushrooms and Chickpeas. Foods 2023; 12:1564. [PMID: 37107359 PMCID: PMC10137549 DOI: 10.3390/foods12081564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-based (PB) meat alternatives are developing due to the consumer's demand, especially those who are mainly health-concerned. Soy proteins (SP) are commonly used as the main ingredients for PB meat analogues; however, SP may have adverse effects on the cognitive function and mood of humans. This study aimed to use grey oyster mushroom (GOM) and chickpea flour (CF) as an alternative source of SP to prepare emulsion-type sausages (ES). The effect of different hydrocolloids and oil on the quality of sausage was also investigated. The sausage was prepared using different concentrations of GOM and CF (20:20, 25:15, and 30:10 w/w). The GOM to CF ratio 25:15 was selected for the ES based on protein content, textural properties, and sensory attributes. The result indicated that sausage containing konjac powder (KP) and rice bran oil (RBO) provided a better texture and consumer acceptability. The final product showed higher protein (36%, dry basis), less cooking loss (4.08%), purge loss (3.45%), higher emulsion stability, and better consumer acceptability than the commercial sausage. The best recipe for mushroom-based ES is 25% GOM, 15% CF, 5% KP, and 5% RBO. In addition, GOM and CF could be an alternative option to replace SP in PB meat products.
Collapse
Affiliation(s)
- Md. Anisur Rahman Mazumder
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Naphat Sujintonniti
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Pranchalee Chaum
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sunantha Ketnawa
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|